

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.le Web: www.gii.le

Ground Investigations Ireland

ATU Letterkenny

Tobins

Ground Investigation Report

March 2023

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gil.ie Web: www.gil.ie

DOCUMENT CONTROL SHEET

Project Title	ATU Letterkenny
Engineer	Tobins
Client	ATU Letterkenny
Project No	12087-07-22
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	A Molloy	D MagLochlainn	C Finnerty	Dublin	10 March 2023

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Geotechnical & Environmental

CONTENTS

1.0	Preamble	1
2.0	Overview	1
2.1.	Background	1
2.2.	Purpose and Scope	1
3.0	Subsurface Exploration	1
3.1.	General	1
3.2.	Trial Pits	2
3.3.	Soakaway Testing	2
3.4.	Percussion Boreholes	2
3.5.	Rotary Boreholes	3
3.6.	Surveying	3
3.7.	Groundwater/Gas Monitoring Installations	3
3.8.	Laboratory Testing	3
4.0	Ground Conditions	4
4.1.	General	4
4.2.	Groundwater	5
4.3.	Laboratory Testing	5
4.3.1.	Geotechnical Laboratory Testing	5
4.3.2.	CBR Laboratory Testing	6
4.3.3.	Chemical Laboratory Testing	6
4.3.4.	Environmental Laboratory Testing	6
5.0	Recommendations & Conclusions	7
5.1.	General	7
5.2.	Foundations	7
5.3.	External Pavements	7
5.4.	Excavations	8
5.5.	Material Reuse	8
5.6.	Soakaway Design1	0

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

APPENDICES

Appendix 1 Site Location Plan
Appendix 2 Trial Pit Records
Appendix 3 Soakaway Records

Appendix 4 Percussion Borehole Records
Appendix 5 Rotary Core Borehole Records

Appendix 6 CBR Testing

Appendix 7 Laboratory Testing

Appendix 8 Groundwater Monitoring

1.0 Preamble

On the instructions of Tobin Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between November 2022 and January 2023 at the site of the proposed development in Letterkenny.

2.0 Overview

2.1. Background

It is proposed to construct a new sports campus with associated services, access roads and car parking at the proposed site. The site is currently greenfield and is situated in the north eastern portion of Letterkenny Town. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant. An earthworks programme to cut and fill cross the site is proposed.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 12 No. Trial Pits to a maximum depth of 3.0m BGL
- Carry out 7 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out. CBR testing to determine pavement design parameters
- Carry out 10 No. Percussion Boreholes to recover soil samples.
- Carry out 10 No. Rotary Core Boreholes to a maximum depth of 16m BGL
- Installation of 5 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 8T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Percussion Boreholes

The percussion boreholes were carried out at the locations shown in the location plan in Appendix 1 using a Tecopsa SPT Tec 10 percussion drilling rig. The percussion sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 63.5kg weight falling a height of 760mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by a Geotechnical Engineer/Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a weight of 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The percussion borehole records are provided in Appendix 4 of this Report.

3.5. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 5 of this Report.

3.6. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.7. Groundwater/Gas Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.8. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite/Engineers Ireland Suite E, H, I pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria. Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer, California Bearing Ratio (CBR), Moisture Condition Value (MCV) tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and generally comprised;

- Topsoil/Surfacing
- Granular Deposits
- Cohesive Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.3m BGL. Tarmac surfacing was present typically to a depth of 0.05m BGL.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *reddish brown sandy gravelly CLAY/SILT with occasional cobbles and boulders* overlying a *blueish grey sandy gravelly CLAY/SILT with occasional cobbles and boulders*. In BH04, BH13 & TP09 a bluish grey sandy SILT was also encountered. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits was generally soft at shallow depths however typically increased with depth and was firm to stiff or stiff below 2.0m to 3.0m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs. The engineering description on the logs are SILT/CLAY as the Atterberg limits all plot on the side of the SILT however when logged and assessed in situ, the delineation between silt and clay was not obvious.

GRANULAR DEPOSITS: Granular deposits were encountered within the cohesive deposits and were typically described as grey brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL with

occasional cobbles and rare boulders. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically medium dense and become dense with depth. It should be noted that many of the trial pits where granular deposits or groundwater were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

WEATHERED BEDROCK: In the majority of exploratory holes weathered rock was encountered which was only digable with the excavator to a depth of less than to 0.1m below the top of the stratum. The trial pits were terminated upon encountering the more competent bedrock, in which further excavation became more difficult. This material was recovered typically as angular gravel and cobbles of shist however there was some variability in the fracture spacing and the ease at which the excavator could progress.

BEDROCK: The rotary core boreholes recovered Medium strong to very strong grey/dark grey to black mottled white micaceous SHIST at shallow depths on the higher elevations and at deeper depths at lower elevations (BH04). In BH13 a strong slightly foliated/interbedded (schist). Light grey to grey QUARTZITE with some pyrite veining.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH2 and BH3 to allow the equilibrium groundwater level to be determined.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a SILT of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 20% and 40% generally with fines contents of 30 to 60%.

The Particle Size Distribution tests confirm that generally the granular deposits are well-graded/gap graded with percentages of silt/clay typically less than 17% with a sand content of typically 10% to 15%. The dominant gravel fraction was 60 to 75%.

4.3.2. CBR Laboratory Testing

The CBR testing on remoulded samples gave results ranging between < 1% and 4.3% for the cohesive deposits, and in the granular sample TP6 0.50m BGL gave a higher value of 24%.

4.3.3. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.4. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation.

The results from the completed laboratory testing are included in Appendix 7 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

The site is very variable with soft deposits present at many of the boreholes and trial pit locations. An allowable bearing capacity of 80 kN/m² is recommended for conventional strip or pad foundations on the firm cohesive deposits at a depth of 1.5m to 2.0m BGL with the exception of where soft deposit are present, such as at the locations of TP09, & BH04 and BH05. Where the suitable cohesive deposits are deeper or where rock is shallow, lean mix trench fill bedrock is recommended to achieve the recommended allowable bearing capacity. A higher allowable bearing capacity of 600 kN/m² is recommended on the intact bedrock at these locations.

The possibility for variation in the depth of the made ground or soft deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

The presence of Silt lenses within the cohesive deposits is a possibility and this material can exhibit liquefaction and behave poorly when compacted or subject to vibration. Where soft silts are present below foundations, these are recommended to be removed and replaced with adequately compacted granular fill.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendices of this Report. The low CBR test results indicate that a capping layer or a sufficient depth of crushed stone fill may be required. Plate bearing tests are recommended at the time of

construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

5.4. Excavations

Excavations in the Made Ground, Peat or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations. Generally, where significant excavations are required in water bearing granular deposits a cut-off wall may be more cost effective than extensive dewatering. An assessment by a specialist dewatering contractor is recommended to determine the most cost effective approach to the proposed excavation.

Excavations in the upper cohesive and weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring rock breaking techniques. The 5T excavator was generally able to excavate to depths of 0.7mbelow the top of the weathered rock where very weathered however became difficult to excavate within the confines of the trial pit on encountering the more competent rock or where rock was competent at shallower depths the trial pit was unable to progress beyond 0.1m BGL below the top of the stratum.

Any waste material to be removed off site should be disposed of to a suitably licenced landfill.

5.5. Material Reuse

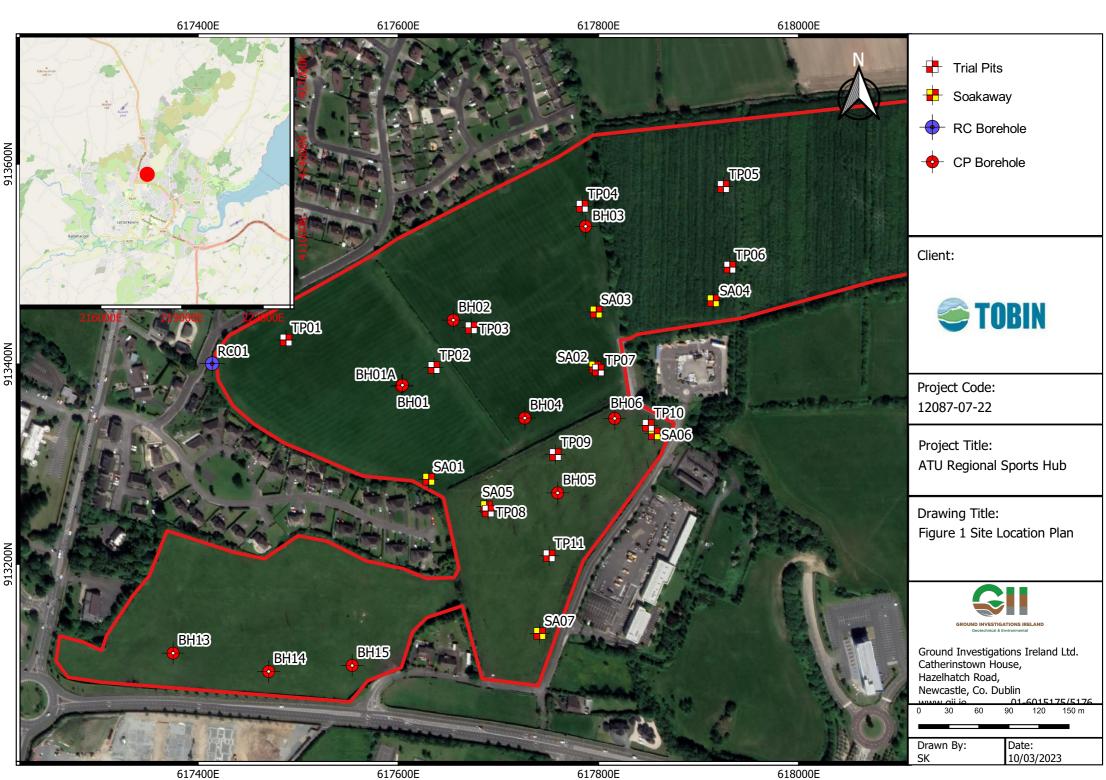
The results of the laboratory testing are shown in the table below and are representative of the cohesive and granular strata encountered on the site. The granular deposits should be generally good for reuse however the cohesive deposits, with one exception in the deeper stiffer deposits are not considered suitable for reuse at the current moisture contents. Typically, an MCV of between 7 and 8 is considered marginal, with 8 or greater considered suitable for reuse. The granular samples tested has an MCV of 10 and would be considered suitable for reuse in their current state, giving a remoulded CBR of typically 24% in the sample tested.

The cohesive deposits have MCV's typically less than 6.3, with one value of less than 1 in TP02 at 0.5m BGL and would be considered unsuitable for reuse in their current state, giving a remoulded CBR's of 2% or less. A single value of 7.8 was recorded in TP08 with a moisture content of 15.5%.

If material is proposed to be reused on site, further site control testing is recommended at the time of construction to verify the design assumptions for the proposed reuse. If a material required a minor treatment, this would restrict the earthworks programme and be subject to weather, making it difficult to quantify and control costs. If materials required significant treatment such as the addition of lime or cement, with the associated plant and equipment required, it may be feasible to progress with this approach provided there is a suitable cut fill balance from the proposed site levels. The quantities of each material encountered during the dig would be variable and dependent on the final formation level chosen.

The moisture content should be carefully monitored and control to be within +/- 2% of the OMC or to achieve an MCV of greater than 7 or 8. The compaction should be specified to achieve 95% relative compaction where construction is proposed, and settlement monitoring undertaken over an appropriate time period to confirm the formation level is suitable for pavement construction. A programme of regular compliance testing, including regular density testing should be undertaken during earthworks to confirm the final compaction achieved. Material outside of the acceptable moisture content can be used as landscaping fill or in areas where settlement can be tolerated without further treatment.

Exp. Hole No.	Sample Depth (m BGL)	MC (%)	MCV	CBR %	Stratum	Silt/Clay Content (%)	Material Reuse
TP01	0.5	19.3	-	< 1%	Cohesive	50	Unsuitable / requires treatment
TP01	1.3	17.8	5.1	< 1%	Cohesive	60	Unsuitable / requires treatment
TP01	2.0	16.8	6.3		Cohesive	60	Unsuitable / requires treatment
TP02	0.5	26.0	0.6	< 1%	Cohesive	36	Unsuitable / requires treatment
TP02	1.35	11.8	9.6	-	Granular	17	Class 1 General Fill
TP03	0.5	18.0	6.2	1.5 %	Cohesive	57	Unsuitable / requires treatment
TP04	0.5	17.8	5.1	3.3%	Cohesive	37	Unsuitable / requires treatment
TP05	0.5	18.6	3.9	1.4%	Cohesive	33-	Unsuitable / requires treatment
TP06	0.5	12.7	10	24%	Granular	7.4	Class 1 General Fill
TP08	0.5	15.5	7.8	2.3%	Cohesive	-	Class 2 General Fill
TP08	1.0	17.6	-	4.3%	Cohesive	27	
TP09	0.5	13.6	-	5%	Cohesive	-	
TP11	0.5	21	-	< 1%	Cohesive	-	


5.6. Soakaway Design

At the locations of SA01 to SA07 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

	Grou	nd Inv	estigations I www.gii.ie	ATU Regional Sports HUB				
Machine: 5		Dimension 1m x 2.5m	ıs		Level (mOD) 98.52	Client		Job Number 12087-07-22
		Location 61748	87.7 E 913423.1 N	Dates 30	/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend sp
				98.22	(0.30) - (0.30) - 0.30	Light brown slightly sandy grass rootlets Firm light brown slightly gr	slightly gravelly TOPSOIL w	rith
0.50	В			97.52	(0.70)	Firm reddish brown sandv	gravelly CLAY with occasio	nal
1.10 1.30	В				(0.40)	cobbles	3	
1.50	Б			97.12	(0.30)	Firm light brown slightly sa	andy gravelly CLAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00	В			96.82	1.70	Firm bluish grey slightly sa occasional cobbles	andy gravelly CLAY with	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				96.12	2.40	Complete at 2.40m		
Plan .					•	Remarks No groundwater encountere	d.	
						Trial pit unstable. Trial pit backfilled when com	pplete.	
		·				Scale (approx)	Logged By	Figure No. 12087-07-22.TP01

	Grou	nd Inve	estigations I www.gii.ie	ATIL Degianal Sports LIUD			Pit Ober 102		
Machine: 5	t tracked	Dimensior 1m x 2.5m	ns	Ground	Level (mOD) 85.06	Client			nber '-07-22
		Location 61763	35.6 E 913395.6 N	Dates 30	/11/2022	Engineer Tobin		She-	et
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lege	Mater Dn
Depth (m) 0.50 1.00 Plan	B B		Field Records	84.76 84.16 83.71	- (0.30) - (0.60) - (0.40) - (0.40) - (1.35) - (- (- (- (- (- (- (- (- (- (- (- (- (-	Brown slightly sandy slight rootlets Firm reddish brown slightly	tly gravelly TOPSOIL with gravelly sandy gravelly CLAY		Mate
					. s	Scale (approx)	Logged By	Figure No. 12087-07-22	TP02

	Grou	nd Inv	estigations II www.gii.ie	reland	Site ATU Regional Sports HUE	Trial Pit Number TP03		
Machine:5 Method:T		Dimensio 1m x 2.5r			Level (mOD) 85.31	Client		Job Number 12087-07-22
		Location 6176	372.9 E 913435.4 N	Dates 30	0/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
0.50 1.00	В			85.01 84.81 83.71 83.31	(0.20) - (0.50) - (1.10) - (1.10) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40) - (0.40)	Firm light brown slightly gr occasional cobbles	gravelly CLAY with occasion	\$ - \(\frac{1}{2} + \frac{1}{2} \)
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	ed. nplete.	
						Scale (approx)	Logged By	Figure No.
						1:25	SML	12087-07-22.TP02

	Grou	nd Inv	estigations I www.gii.ie	Site ATU Regional Sports HUB	Trial Pit Number TP04			
Machine: 5	it tracked	Dimensio 1m x 2.5r	ns	Ground	Level (mOD) 86.45	Client Engineer Tobin		Job Number 12087-07-22
		Location 6177	83.7 E 913556.9 N	Dates 30)/11/2022			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend sp
0.50	В			86.15 85.25	- (0.30) - 0.30 - 0.30 (0.90)	rootlets	gravelly TOPSOIL with gr	ass
				84.05 84.05		Rock - Schist Complete at 2.40m		हि <u>ं</u> <u>ज्</u> यु
Plan .					•	Remarks		
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	a. nplete.	
		-						
		·				Scale (approx)	Logged By	Figure No. 12087-07-22.TP04

	Ground Investigations Ireland Ltd www.gii.ie					Site ATU Regional Sports HUE	Trial Pit Number TP05	
Machine: 5 Method: T		Dimension 1m x 2.5r	ns		Level (mOD) 85.47	Client Engineer Tobin		Job Number 12087-07-22
		Location 6179	24.8 E 913576.5 N	Dates 30)/11/2022			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Water
0.50 1.60 2.00	В			83.97 83.47 83.27	- (1.20) - (1.50) - (0.50) - (0.20) - (2.20) - (2.20) - (1.20)	Firm reddish brown sandy Firm bluish grey slightly groccasional cobbles		
						No groundwater encounterer Trial pit unstable. Trial pit backfilled when com	ed. nplete.	
		_				•		
		•		- '				
				•				
		_						
·	•	-	· ·		. 5	Scale (approx) 1:25	Logged By SML	Figure No. 12087-07-22.TP05
					1			1

	Grou	nd Inv	estigations www.gii.ie	ATU Regional Sports HUB Trial I Numb TP0				
Machine: 5		Dimension 1m x 2.5n	ns		Level (mOD) 80.59	Client		Job Number 12087-07-22
		Location 6179	31.1 E 913495.9 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend by S
0.50 1.20	В			79.69 79.49 78.74	- (0.52) - 0.90 - (0.20) - 1.10 - (0.70) - 1.80 - 1.85	Loose grey slightly clayey cobbles Firm black organic CLAY v	gravelly CLAY with many co	onal
						Groundwater encountered. Trial pit stable. Trial pit backfilled when com	nplete.	
•	•	·						
						Scale (approx)	Logged By	Figure No. 12087-07-22.TP06

	Grou	nd Inv	estigations www.gii.ie	Site ATU Regional Sports HUB	ı	Trial Pit Number TP07		
Machine: 5	t tracked	Dimensio 1m x 2.5r	ns	Ground	Level (mOD) 78.15	Client		Job Number 12087-07-22
		Location 6177	99.7 E 913393.2 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Page N
1.00				76.85	1.30	Complete at 1.30m	sandy GRAVEL (weathered	
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	d. plete.	
						Scale (approx)	Logged By SML	Figure No. 12087-07-22.TP07

	Grou	nd Inve	estigations I www.gii.ie	Site ATU Regional Sports HUB	Trial Pit Number TP08			
Machine: 5	t tracked	Dimensior 1m x 2.5m	ıs	Ground	Level (mOD) 77.89	Client Engineer Tobin		Job Number 12087-07-22
		Location 61768	39.6 E 913252.1 N	Dates 30)/11/2022			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
				77.54	(0.35) - - - - 0.35	Brown slightly sandy slight rootlets Firm light brown slightly gr	tly gravelly TOPSOIL with gr	ass
0.50	В			77.24	(0.30) - - - - - - - - - - -	Firm bluish grey slightly sa	andy gravelly CLAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.00	В			76.49	(0.75)	Loose grey blue slightly sa		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.80	В			76.19	(0.30) - 1.70	Firm light brown slightly sa		
2.50	В			75.29	2.60	Complete at 2.60m		
Plan .						Remarks No groundwater encountere	od.	
						Trial pit backfilled when com	nplete.	
						Scale (approx)	Logged By	Figure No. 12087-07-22.TP08

	Ground Investigations Ireland Ltd www.gii.ie					ATU Regional Sports HUB Trial F Numb TP0			
Machine : 5t tracked Method : Trial Pit		Dimension 1m x 2.5m	ıs	Ground	Level (mOD) 77.45	Client		Job Number 12087-07-22	
		Location 61775	56.9 E 913308.6 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1	Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater	-
0.50	В			77.25	(0.20) - (0.20) - (0.20) - (0.85)	Brown slightly sandy slight rootlets Soft to firm bluish grey sar	tly gravelly TOPSOIL with gra	3SS	
1.20	В			76.40 76.15	(0.25)	Soft to firm reddish brown Soft bluish grey slightly sa cobbles and boulders	sandy gravelly CLAY	**************************************	
1.50	В			75.55	(0.60)	COSSICS UNA SOCIOCIS			
Plan						Complete at 2.60m			
						No groundwater encountere Trial pit stable. Trial pit backfilled when com	d.		
		•				Trial pit dackfilled when com	рієїє.		
		•							
						Scale (approx)		Figure No. 12087-07-22.TP09	-

G	Ground Investigations Ireland Ltd www.gii.ie					Site Trial Pit Number TP10				er		
Machine : 5t tracked Method : Trial Pit		Dimensi 1m x 2.5	ons	,	Ground Level (mOD) 77.11		Client			Job Number 12087-07-22		
		Location 617849.8 E 913337.8 N			Dates 30/11/2022		Engineer Tobin			Sheet 1/1		
Depth (m)	Samp	ole / Tests	Water Depth (m)	Field f	Records	Level (mOD)	Depth (m) (Thickness)	Description		L	_egend	Water
Plan						76.91 76.81 76.76	- (0.130) - 0.35	Brown slightly sandy slightly rootlets Firm reddish brown slightly Weathered rock - schist Complete at 0.35m	y sandy gravelly CLAY	- //	Ties I	
								No groundwater encountere Trial pit unstable. Trial pit backfilled when com	d. plete.			
			·									
								Scale (approx)	Logged By SML	Figure I		 -10

Ground Investigations Ireland Ltd www.gii.ie						Site Trial Pit Numbe ATU Regional Sports HUB TP11		
Machine : 5t tracked Method : Trial Pit		Dimension 1m x 2.5	ons	Ground	Level (mOD) 76.19	Client		Job Number 12087-07-22
		Location 617750.6 E 913207.4 N		Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater V
0.50 1.50 2.00	В			74.19 73.79		Firm brown grey slightly sa occasional cobbles	andy gravelly CLAY with	
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	d. plete.	
		•						
		-			s	Scale (approx)		Figure No. 12087-07-22.TP11

TP01

ATU Regional Sports HUB – Trial Pit Photos

TP02

ATU Regional Sports HUB – Trial Pit Photos

TP03

ATU Regional Sports HUB – Trial Pit Photos

TP04

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP05

TP06

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP07

ATU Regional Sports HUB – Trial Pit Photos





TP08

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP09

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos


TP10

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

APPENDIX 3 – Soakaway Records

Ground Investigations Ireland Ltd www.gii.ie						Site ATU Regional Sports HUB	Trial Pit Number SA01		
Machine : 5t tracked Method : Trial Pit		Dimensi		Ground	Level (mOD) 80.84	Client		Job Number 12087-07-22	
			Location 617630 E 913284 N		/12/2022	Engineer Tobin		Sheet 1/1	
Depth (m)	Sample / Test	water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend to to	
				80.54	(0.30) - (0.30) - 0.30		slightly gravelly TOPSOIL w	ith	
					(0.30)	Firm reddish brown slightly	y sandy gravelly CLAY		
				80.24	0.60	Firm bluish grey sandy gra	avelly silty CLAY with occasion	onal ×.º	
					(1.00)			× · · · · · · · · · · · · · · · · · · ·	
				79.24				** *** *** ** ** ** ** ** ** ** ** ** **	
						Complete at 1.60m			
					- - - -				
Plan		•			•	Remarks			
						Soakaway completed in TP0	JI.		
•									
•						Scale (approx)		Figure No. 12087-07-22.SA0	1

Ground Investigations Ireland Ltd www.gii.ie						ATU Degianal Sports UUD			Trial Pit Number SA02	
Machine : 5t tracked Method : Trial Pit		Dimension		Ground	Level (mOD) 78.30	Client		Job Numbe 12087-07		
		Location 617796.1 E 913396.1 N		Dates 01/12/2022		Engineer Tobin			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water	
Plan .	Sample / Tests		Field Records	77.90 77.90 77.05	- (0.40) - 0.40 - 0.40 - 1.10 - (0.70) - 1.25 - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - (0.70) - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.10 - 1.25 - 1.		slightly gravelly TOPSOIL w		Maria de la companya della companya	
						Gcale (approx)	Logged By	Figure No. 12087-07-22.S/	 A02	

	Grou	ınd Inv	estigations www.gii.ie	Ireland	Ltd	Site ATU Regional Sports HUB		Trial Num SA	ber
Machine :	5t tracked	Dimensio		Ground	Level (mOD) 80.75	Client		Job Num 12087-	
		Location 6177	797.3 E 913451.2 N	Dates 30)/11/2022	Engineer Tobin		Shee	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legen	Water
Plan .				79.50	(0.30) - (0.30) - (0.95) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55) - (0.55)	Dark brown slightly sandy grass rootlets Firm reddish brown slightly cobbles Firm bluish grey sandy gracobble Complete at 1.80m Remarks Trial pit collapsed before it cosakaway completed in TPC		ional & Control of the second	
					\$	Scale (approx) 1:25		Figure No. 12087-07-22.	SA03

	Grou	ınd Inv	estigations I www.gii.ie	reland	Ltd	Site ATU Regional Sports HUB	3	Trial Pit Number SA04
Machine : Method :	5t tracked	Dimensio		Ground	Level (mOD) 79.99	Client		Job Number 12087-07-22
		Location 6179	914.3 E 913462.4 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend by S
Plan .				79.69	1.60		away FAIL rose to 1.30mBG	
						Scale (approx) 1:25	Logged By	Figure No. 12087-07-22.SA03

	Grou	nd Inv	estigations Iı www.gii.ie	reland l	Ltd	Site ATU Regional Sports HUB	;		Trial Pit Number SA05
Machine: 5	t tracked	Dimension		Ground	Level (mOD) 77.99	Client			Job Number 2087-07-22
		Location 6176	87.8 E 913256.6 N	Dates 01	/12/2022	Engineer Tobin		;	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lo	egend Nate
Plan				76.29	(0.30) - (0.30) - (1.40) - (1.40) - (1.40)	Dark brown slightly sandy grass rootlets Firm bluish grey slightly gr Complete at 1.70m Remarks Soakaway completed in TPC	05	x. x	
						Scale (approx) 1:25	Logged By SML	Figure N 12087-07	7-22.SA05

	Gro	und Inv	estigations/ www.gii.ie	s Ireland l	Ltd	Site ATU Regional Sports HUB	3	Trial F Numb SA0	oer
Machine :	5t tracked	Dimensio		Ground	Level (mOD) 76.85	Client		Job Numb 12087-0	
		Location 6178	355.4 E 913329.4 N	Dates 01	/12/2022	Engineer Tobin		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	s Level (mOD)	Depth (m) (Thickness)	D	escription	Legeno	Water
Plan				76.75		Dark brown slightly sandy grass rootlets Grey sandy Crushed Rock Complete at 0.15m	slightly gravelly TOPSOIL w	ith	6787
						Soakaway terminated due to	o location of services		
					•				
					s	Scale (approx)	Logged By	Figure No. 12087-07-22.S	 BA06

	Gro	und Inv	estigations www.gii.ie	Ireland I	Ltd	Site ATU Regional Sports HUB	3	Trial Pit Numbe SA06	er
Machine : 5	ot tracked	Dimensio		Ground	Level (mOD) 76.85	Client		Job Numbe 12087-07-	
		Location 6178	57.4 E 913331.4 N	Dates 01	/12/2022	Engineer Tobin		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
Plan				76.75		Dark brown slightly sandy grass rootlets Grey sandy Crushed Rock Complete at 0.15m	slightly gravelly TOPSOIL w	rith	
						Soakaway terminated due to	o location of services		
•		·							
		·							
					s	Scale (approx)	Logged By	Figure No. 12087-07-22.SAG	 06A

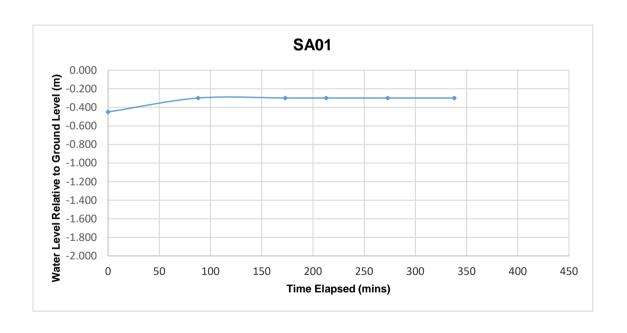
	Grou	nd Inv	estigations I www.gii.ie	reland	Ltd	Site ATU Regional Sports HUB	ı	Trial Pi Numbe SA0	er
Machine: 5	it tracked	Dimension		Ground	Level (mOD) 73.47	Client		Job Numbe 12087-07	
		Location 6177	40.8 E 913129.8 N	Dates 01	/12/2022	Engineer Tobin		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
Plan				73.17	(0.30) - (0.30) - (1.00) - (1.00) - (1.70) - (1.	Dark brown slightly sandy grass rootlets Firm reddish sandy gravel	andy slightly gravelly silty CL	ith	
						1:25	SML	12087-07-22.SA	407

SA01 Soakaway Test to BRE Digest 365

Trial Pit Dimensions: 1.80m x 0.40m x 1.60m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176


Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
01/12/2022	0	-0.450
01/12/2022	88	-0.300
01/12/2022	173	-0.300
01/12/2022	213	-0.300
01/12/2022	273	-0.300
01/12/2022	338	-0.300

*Soakaway failed - Pit backfilled

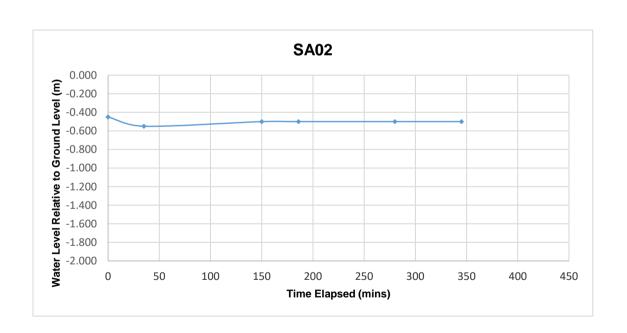
 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.45
 1.600
 1.150
 0.7375
 1.3125

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie


SA02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.7m x 0.40m 1.20m (L x W x D)

Date	Time	Water leve (m bgl)
01/12/2022	0	-0.450
01/12/2022	35	-0.550
01/12/2022	150	-0.500
01/12/2022	186	-0.500
01/12/2022	280	-0.500
01/12/2022	345	-0.500

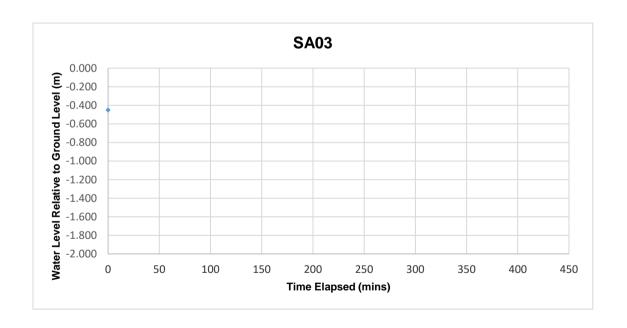
*Soakaway failed - Pit backfilled

level

Start depth **Depth of Pit** Diff 75% full 25%full 0.45 1.200 0.750 0.6375 1.0125

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie


Web: www.gii.ie

SA03 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.40m 1.60m (L x W x D)

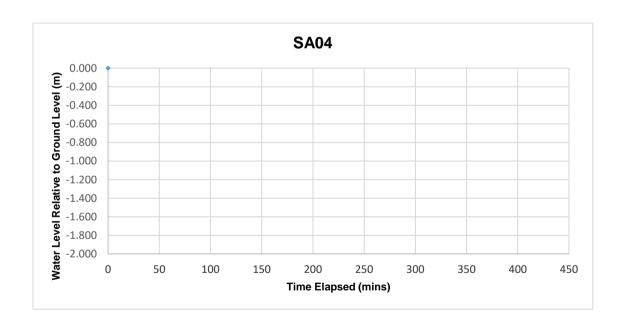
Date	Time	Water level (m bgl)
01/12/2022	0	-0.450

*Trial pit collapsed before it could be filled - FAIL

Start depth Depth of Pit Diff 75% full 25%full

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie


Email: info@gii.ie Web: www.gii.ie

SA04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.40m x 1.60m (L x W x D)

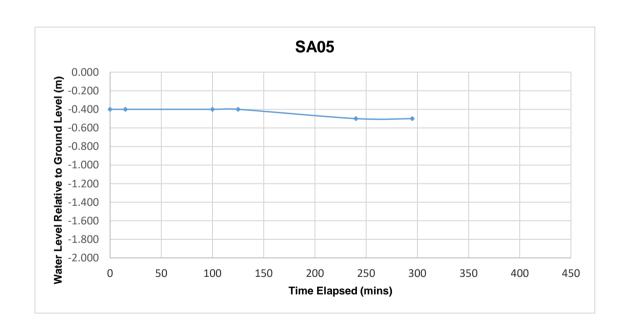
Date	Time	Water level (m bgl)
01/12/2022	0	0.000

*Groundwater seepage soakaway FAIL, rose to 1.30mBGL

Start depth Depth of Pit Diff 75% full 25%full

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176


Email: info@gii.ie Web: www.gii.ie

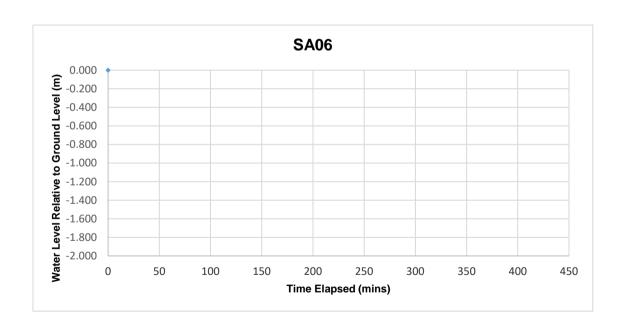
SA05 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.70m x 0.40m x 1.70m (L x W x D)

Date	Time	Water level (m bgl)
01/12/2022	0	-0.400
01/12/2022	15	-0.400
01/12/2022	100	-0.400
01/12/2022	125	-0.400
01/12/2022	240	-0.500
01/12/2022	295	-0.500

*Soakaway failed - Pit backfilled

Depth of Pit Start depth Diff 75% full 25%full 0.40 1.700 1.300 0.725 1.375

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176 Email: info@gii.ie

Web: www.gii.ie

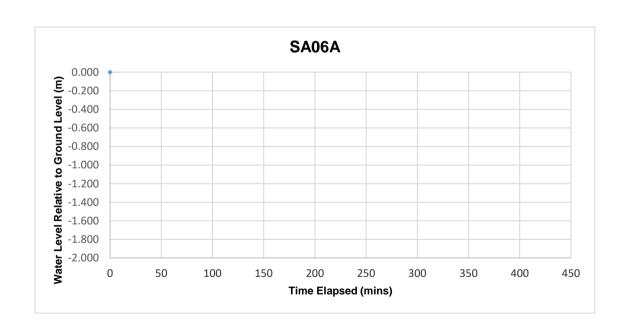
SA06 Soakaway Test to BRE Digest 365 **Trial Pit Dimensions:**

Date	Time		r level bgl)
01/12/2022	0	0.000	
	*T	erminated d	ue to location of services

Start depth Depth of Pit 25%full Diff 75% full

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie


Web: www.gii.ie

SA06A

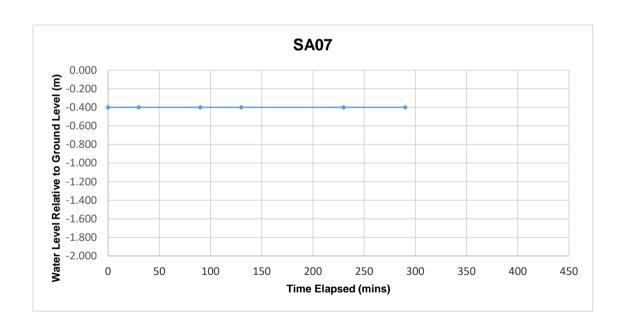
Soakaway Test to BRE Digest 365 Trial Pit Dimensions: (L x W x D)

Date	Time	Water level (m bgl)
01/12/2022	0	0.000
	*7	Ferminated due to location of services

Start depth Depth of Pit 75% full 25%full Diff

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

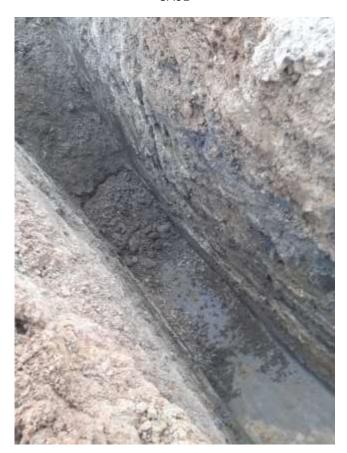
Tel: 01 601 5175 / 5176


Email: info@gii.ie Web: www.gii.ie

SA07 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.76m x 0.40m x 1.70m (L x W x D)

Date	Time	Water level (m bgl)			
01/12/2022	0	-0.400			
01/12/2022	30	-0.400			
01/12/2022	90	-0.400			
01/12/2022	130	-0.400			
01/12/2022	230	-0.400			
01/12/2022	290	-0.400			

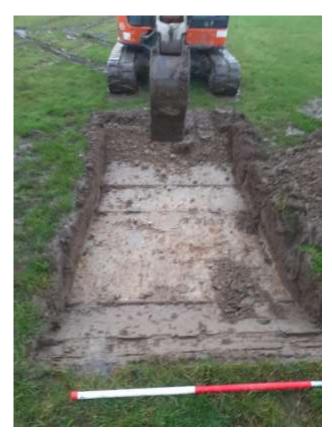
*Soakaway failed - Pit backfilled


Depth of Pit Start depth Diff 75% full 25%full 0.40 1.700 1.300 0.725 1.375

ATU Regional Sports HUB – Soakaway Photos

SA01

ATU Regional Sports HUB – Soakaway Photos


SA02

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

SA04

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

SA06

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

SA07

ATU Regional Sports HUB – Soakaway Photos

ATU Regional Sports HUB – Soakaway Photos

APPENDIX 4 - Percussion Borehole Records

Ground Investigations Ireland Ltd www.gii.ie					Site ATU Regional Sports HUB		Number BH01		
Excavation Method Drive-in Windowless Sampler		Dimensions 88mm to 0.80m		Ground Level (mOD) 87.70		Client		Job Numbe 12087-07	
		Location 617603 E 913377.7 N		Dates 25/10/2022		Engineer Tobin		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.00-0.10 0.10-0.80	B1 B2 SPT(C) N=50		25,25/50	87.60 86.90	(0.10) - 0.10 (0.70)	Dark brown slightly sandy slightly gravelly Clay TO with rootlets Soft to firm brown slightly sandy gravelly slightly sil Refusal at 0.80m	PSOIL		
Remarks 0.00m to 0.8	0m BGL: 80% Reco	very			- - - - - - - - - - - - -		Scale (approx)	Logge By	ed
No groundwa Window sam Backfilled on	ater encountered pple refusal at 0.80m completion	BGL					1:25 Figure N 12087-07	GGR o .	!

Ground Investigations Ireland Ltd www.gii.ie					Site ATU Regional Sports HUB		Number BH01A		
Excavation Method Drive-in Windowless Sampler		Dimensions 88mm to 2.00m		Ground Level (mOD) 87.70		Client		Job Number 12087-07-22	
		Location 617604 E 913378.7 N		Dates 25/10/2022		Engineer Tobin		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Kate Manager	
0.00-0.20	B1 B2			87.50	(0.20) - (0.20) - 0.20	Brown slightly sandy slightly gravelly Clay TOPSOIL w grass and rootlets Firm greyish light brown mottled brown slightly sandy slightly slity slightly gravelly CLAY	ith	× · · · · · · · · · · · · · · · · · · ·	
							X	×. • • • • • • • • • • • • • • • • • • •	
0.80-1.30	B3				(1.10)		× .	× · · · · · · · · · · · · · · · · · · ·	
1.00-1.45	SPT(C) N=39		6,4/7,8,9,15				×	×. · · · · · · · · · · · · · · · · · · ·	
1.30-2.00	B4			86.40	1.30	Weathered rock: dark grey clayey medium to coarse angular to sub rounded Gravel.	×.	(°	
					(0.70)			0000	
2.00-2.45	SPT(C) N=50		18,20/25,25	85.70	2.00	Refusal at 2.00m		*****	
					- - - -				
					- - - -				
					<u>-</u> - -				
					- - - - -				
					_ _ _ _				
					- - - -				
					- - - - - -				
Remarks 0.00m to 1.0	00m BGL: 85% Reco	very			<u> </u>	S (ap	Scale oprox)	Logged By	
No groundw Window san	00m BGL: 90% Reco rater encountered nple refusal at 2.00m n completion	very n BGL				1	1:25	GGR	
						Fi	igure No).	

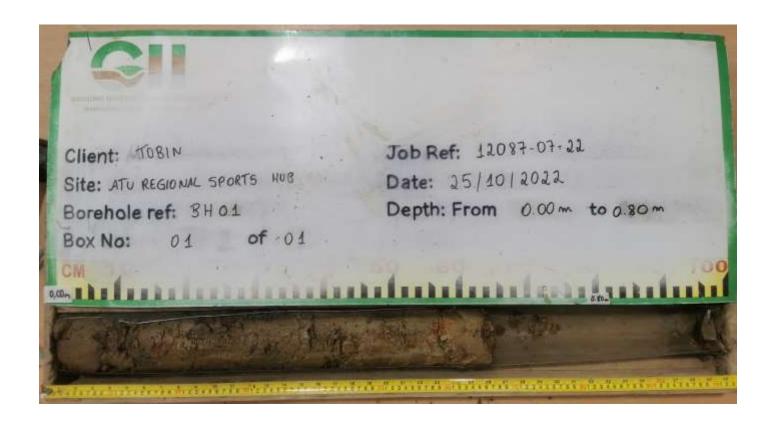
	Ground Investigations Ireland Ltd www.gii.ie					Site ATU Regional Sports HUB		Number BH02	
Excavation Method Drive-in Windowless Sampler		Dimensions 88mm to 2.00m 68mm to 2.50m		Ground Level (mOD) 86.58		Client		Job Number 12087-07-22	
		Location 617654.8 E 913443.8 N		Dates 25/10/2022		Engineer Tobin		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Nate	
0.00-0.20	B1				(0.20)	Brown slightly sandy slightly gravelly Clay TOPSOIL w grass and rootlets	with		
0.20-0.75	B2			86.38	0.20	Firm greyish brown slightly sandy slightly gravelly CLA	AY		
0.75-1.10	В3			85.83	0.75	Firm yellowish brown slightly sandy gravelly CLAY wit organic matter	th		
1.00-1.45 1.10-2.30	SPT(C) N=9 B4		3,2/2,2,3,2	85.48	1.10	Soft greyish brown slightly sandy gravelly silty CLAY. Is fine to coarse angular to rounded. With occasional fragments of roots	Gravel		
2.00-2.45	SPT(C) N=22		1,1/1,2,6,13		<u>-</u> - - -		•	×. • · · · · · · · · · · · · · · · · · ·	
2.30-2.50	B5			84.28	2.30 (0.20)	Weathered rock: dark grey silty fine to coarse angular sub rounded Gravel	r to	× · · · · ·	
2.50-2.95	SPT(C) N=50		15,25/50	84.08		Refusal at 2.50m			
Remarks 0.00m to 1.00m BGL: 90% Recovery 1.00m to 2.00m BGL: 75% Recovery 2.00m to 2.50m BGL: 100% Recovery							Scale pprox)	Logged By	
No groundwa	ater encountered iple refusal at 2.50m					F	1:25 Figure No		
						1	12087-07	-22.WS02	

	Grour	nd In	vestigations Irel	and	l td		Site		Number
₹	Sigui	1 4 111	www.gii.ie	arra			ATU Regional Sports HUB		BH03
Excavation I Drive-in Wind	Method dowless Sampler	Dimens 88 68	ions mm to 1.50m mm to 2.10m	Ground	Level 85.21	(mOD)	Client		Job Number 12087-07-22
		Locatio 61	n 7787 E 913537.4 N	Dates 25	5/10/20)22	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	De ((Thic	epth m) kness)	Description		Kate Language Market
0.00-0.20	B1				-	(0.20)	Brown mottled dark brown slightly sandy slightly g Clay TOPSOIL with rootlets	ravelly	
0.20-1.00	B2			85.01	_	0.20	Firm brownish grey slightly sandy gravelly CLAY		
0.50-0.95	SPT(C) N=18		4,4/4,5,4,5		<u>-</u>				
1.00-1.60	B3					(1.90)			
1.50-1.95	SPT(C) N=26		4,4/4,6,8,8		<u>-</u> -				
1.60-2.10	B4		+,+/+,0,0,0						
					-				
2.10-2.55	SPT(C) N=50		12,15/20,25,5	83.11		2.10	Refusal at 2.10m		• • • • • • •
Remarks							1	- ·	
0.00m to 0.50 0.50m to 1.50	Om BGL: 60% Recov Om BGL: 85% Recov Om BGL: 95% Recov ater encountered	ery ery ery						Scale (approx)	Logged By
Window sam Backfilled on	ple refusal at 2.10m	BGL						1:25 Figure N	GGR o.

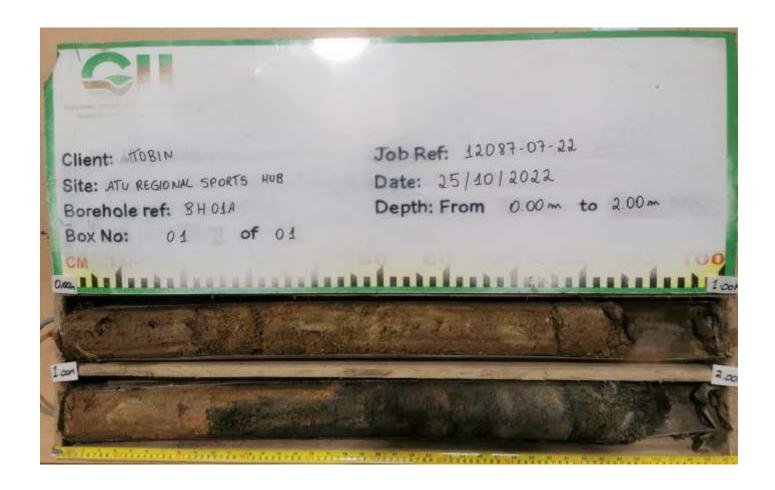
	Groui	nd In	vestigations Ire	eland	Ltd	Site ATU Regional Sports HUB		Number BH04
Excavation Drive-in Wind	Method dowless Sampler	Dimens 88 68	ions mm to 2.00m mm to 3.70m		Level (mOD) 79.03	Client		Job Number 12087-07-22
		Locatio 61	n 7726.3 E 913345.8 N	Dates 25	5/10/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kate Pend Nate
0.00-0.30	B1 B2			78.73	- (0.30) - 0.30 - 0.30 (1.00)	Brown slightly sandy slightly gravelly Clay TOPSOIL w grass and rootlets Soft to firm brown sandy slightly gravelly silty CLAY	vith .	
1.00-1.45	SPT(C) N=7		2,2/1,2,2,2	77.73				× ° · · · · · · · · · · · · · · · · · ·
1.30-2.70	B3			77.30	- - - - - - - - - - -	Very soft grey sandy slightly gravelly SILT	X	
2.00-2.45	SPT(C) N=4		0,0/1,1,1,1	76.22	(1.40)		** X	**************************************
2.70-3.70 3.00-3.45	B4 SPT(C) N=25		5,5/6,6,6,7	76.33		Very soft grey sandy slightly gravelly silty CLAY		
3.70-4.15	SPT(C) N=50		4,10/20,25,5	75.33	3.70	Refusal at 3.70m		
Remarks 0.00m to 1.0 1.00m to 2.0 2.00m to 3.0 3.00m to 3.7 No groundw: Window sam Backfilled on	0m BGL: 85% Recov 0m BGL: 80% Recov 0m BGL: 80% Recov 0m BGL: 95% Recov ater encountered 1ple refusal at 3.70m o completion	very very very very BGL			<u> </u>	1 Fi	Scale oprox) 1:25 igure No 2087-07	GGR -22.BH04

	Grou	nd In	vestigations Ir www.gii.ie	Ltd	Site ATU Regional Sports HUB	Number BH05	
Excavation Drive-in Win	Method dowless Sampler	Dimens 88			Level (mOD) 77.17	Client	Job Number 12087-07-22
		Locatio	on 7759.1 E 913270.9 N	Dates 25	/10/2022	Engineer Tobin	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
0.00-0.20	B1				(0.20)	Brown slightly sandy slightly gravelly Clay TOPSOIL wit rootlets	th
0.20-1.00	B2			76.97	- - - - - - - - - - - - - - - - - - -	Soft brownish grey sandy slightly gravelly slightly clayer SILT with occasional fragments of rootlets	y
1.00-1.45 1.00-2.00	SPT(C) N=5 B3		0,1/1,2,1,1	76.17	1.00	Soft grey sandy slightly gravelly slightly clayey SILT	
2.00-2.45	SPT(C) N=50		1,25/50	75.17	2.00	Refusal at 2.00m	
Remarks 0.00m to 1.0 1.00m to 2.0 2.00m to 2.1	00m BGL: 80% Reco 00m BGL: 75% Reco 0m BGL: No recove ater encountered	very very rv					cale Logged prox) By
No groundw Window san Backfilled or	npie retusai at 2.10m	n BGL					:25 GGR gure No.
Dackinieu Of	ι συπρισιιστι						gure No. 2087-07-22.BH05

	Groui	nd In	vestigations Irel www.gii.ie	land l	Ltd	Site ATU Regional Sports HUB	Number BH06
Excavation Drive-in Wine	Method dowless Sampler	Dimens 88			Level (mOD) 77.41	Client	Job Number 12087-07-22
		Locatio 61	n 7816.1 E 913345.4 N	Dates 25	/10/2022	Engineer Tobin	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nater
0.00-0.20 0.20-1.00	B1 B2			77.21	0.20 0.20 0.20	Brown slightly sandy slightly gravelly Clay TOPSOIL with rootlets Soft to firm brown mottled black slightly sandy gravelly CLAY	
1.00-1.45 1.00-1.30	SPT(C) N=9 B3		1,0/1,2,3,3		- - - - - - -		0 0 0
1.30-2.00	B4			76.11	1.30	Weathered rock: grey silty fine to coarse angular to sub rounded Gravel	X
2.00-2.45	SPT(C) N=50		25,25/50	75.41	2.00	Refusal at 2.00m	
Remarks 0.00m to 1.0 1.00m to 2.0 No groundwa Window sam Backfilled on	Om BGL: 70% Recov 0m BGL: 80% Recov ater encountered ple refusal at 2.00m completion	very very BGL				Scale (approx) 1:25 Figure I 12087-(GGR

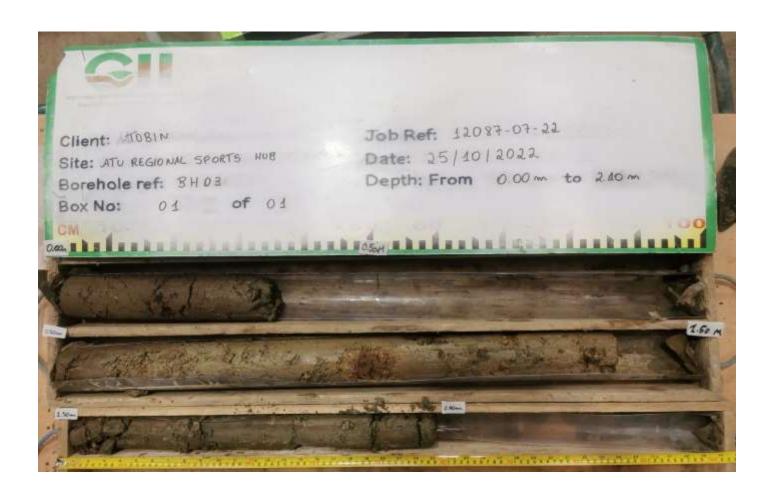

	Grou	nd In	vestigations Ir www.gii.ie	reland	Ltd	Site ATU Regional Sports HUB		Number BH13
Excavation Drive-in Win	Method dowless Sampler	Dimens 88			Level (mOD) 91.17	Client		Job Number 12087-07-22
		Locatio 61	n 7374.9 E 913110.8 N	Dates 25	/10/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Mater Market
0.00-0.20 0.20-0.50	B1 B2			90.97	(0.20) - (0.20) - (0.30) - (0.30)	Brown slightly sandy slightly gravelly Clay TOPSOIL grass and rootlets Soft light brown slightly sandy slightly gravelly silty C with occasional fragments of rootlets	CLAY	× × .
1.00-1.45	B3 SPT(C) N=20		2,1/1,1,3,15	30.07	(1.00)	Soft grey sandy gravelly clayey SILT. Gravel is fine to coarse angular to rounded	to	
1.50-1.95	SPT(C) N=50		25,25/50	89.67	1.50	Refusal at 1.50m	Scale	Logaed
0.00m to 1.0 1.00m to 1.5	00m BGL: 75% Reco 00m BGL: 40% Reco ater encountered n completion	very very BGL				(Scale (approx)	Logged By
Daoximed Of	i compiction						Figure No.	o. 7-22.BH13

	Grou	nd In	vestigations Ir www.gii.ie	reland	Ltd	Site ATU Regional Sports HUB		Numbe BH14	
Excavation Drive-in Wir	Method ndowless Sampler	Dimens 88			Level (mOD) 88.51	Client		Job Numb 12087-0	
		Locatio 61	n 7470.4 E 913092.4 N	Dates 25	5/10/2022	Engineer Tobin		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.00-0.20	B1				(0.20)	Dark brown slightly sandy s;lightly gravelly Clay TOPSOI with grass and rootlets			
0.20-1.00	B2			88.31		Greyish brown slightly sandy clayey fine to coarse angula to sub rounded GRAVEL	ar		F
Remarks 0.00m to 1.0	SPT(C) N=50		12,25/50	87.51		Refusal at 1.00m	ale	Logge	eed
0.00m to 1.0 No groundw Window san Backfilled or	00m BGL: 70% Reco vater encountered nple refusal at 1.00m n completion	very n BGL				Sca (appr		Logge By GGR	
						Figu	ure No		


	Groui	nd In	vestigations Ire www.gii.ie	land	Ltd	Site ATU Regional Sports HUB	Number BH15
Excavation Drive-in Win	Method dowless Sampler	Dimens 88			Level (mOD) 83.18	Client	Job Number 12087-07-22
		Locatio 61	n 7553.8 E 913098.4 N	Dates 25	/10/2022	Engineer Tobin	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Vater Vater
0.00-0.30	B1				(0.30)	Dark brown slightly sandy slightly gravelly Clay TOPSOIL with grass and rootlets	
0.30-1.00	B2			82.88	0.30	Greyish brown slightly sandy clayey fine to coarse GRAVEI	
					- - (0.70)		
1.00-1.45	SPT(C) N=22		3,5/4,6,6,6	82.18	1.00	Soft brown mottled grey slightly sandy gravelly silty CLAY	× • • • •
1.00-1.60	B3		0,0/1,0,0,0				× · · · · · · · · · · · · · · · · · · ·
				81.58	1.60		× · · · · · · · · · · · · · · · · · · ·
1.60-2.05	SPT(C) N=50		25,25/50	01.50	- 1.00 	Refusal at 1.60m	
					- - - - -		
					- - - -		
					- - - -		
					- - - - -		
					- - - -		
					- - - - -		
					 - - -		
					- - - -		
					- - - - -		
					- - - -		
					- - - -		
Remarks 0.00m to 1.0 1.00m to 1.6	0m BGL: 70% Recov	very very			<u> </u>	Scale (approx	Logged By
No groundwa Window sam Backfilled or	ater encountered nple refusal at 1.60m n completion	BGL				1:25	GGR
						Figure 12087	• No. -07-22.WS15

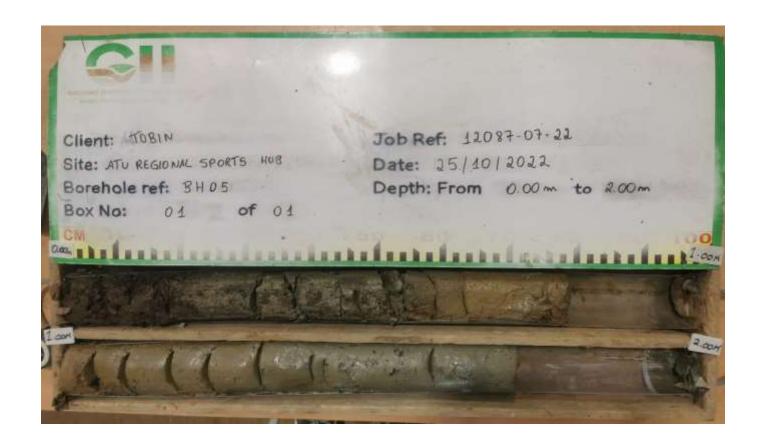
ATU Regional Sports HUB - Window Samples Photos

BH01

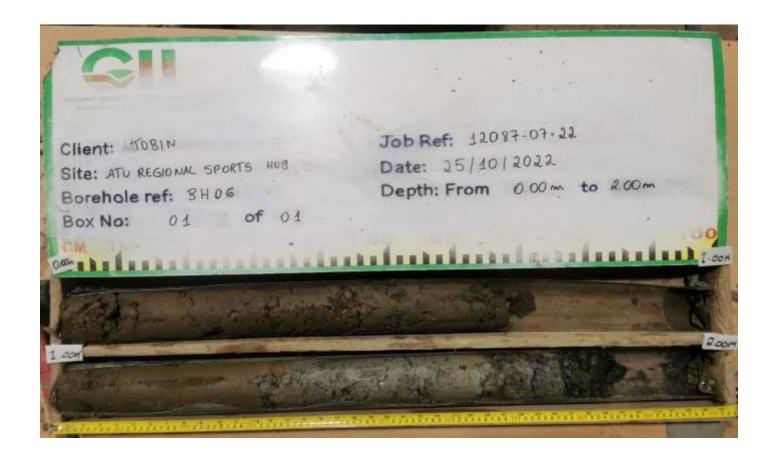

BH01A

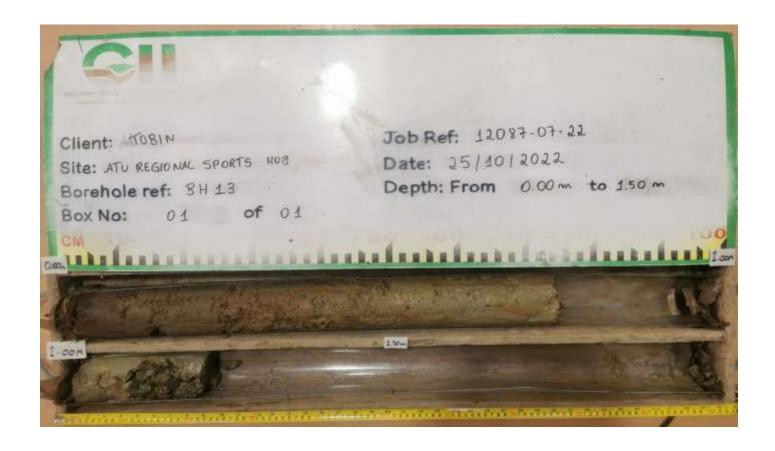
ATU Regional Sports HUB – Window Samples Photos

BH02

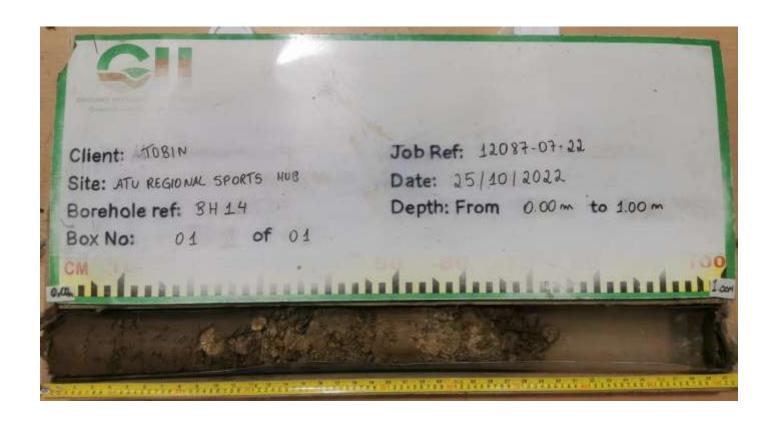


ATU Regional Sports HUB – Window Samples Photos


BH04



ATU Regional Sports HUB - Window Samples Photos


BH06

ATU Regional Sports HUB - Window Samples Photos

BH14

APPENDIX 5 - Rotary Borehole Records

		Grou	nd In		gations Ire w.gii.ie	land	and Ltd Site ATU Regional Sports HUB				
Machine: B	ater			Diamete 2mm cas	r ed to 10.00m		Level (mOD) 103.92	Client		N	ob lumber 087-07-22
Core Dia: 98 Method : R		d	Locatio 61		913399.6 N	Dates 17	7/11/2022	Engineer Tobin		SI	heet 1/1
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.15 1.65 2.50 2.65 3.70 4.00 5.50	100	89	57	NI 25 20 14		103.82 102.77	(1.05) 1.15	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets. Driller notes: Boulder onto rock. Recovery consist of black mottled reddish brown and greenish grey slightly sandy very gravelly CLAV with some subangular cobbles. Gravel is angular to subrounded fine to coarse. Weak to medium strong foliated dark grey mottlet brown micaceous (pelitic) SCHIST. Distinctly weathered with clay smearing and occasional bands of clay. 1.15m - 1.65m BGL: Mostly non-intact 1.65m - 2.65m BGL: 2 Fracture sets - F1: Fractures are dipping 0-30 degrees, very closely to closely spaced, smooth planar to smooth undulating with slight clay smearing. F2: Fractures are dippping 70-85 degrees, closely to medium spaced, rough planar to rough undulating with some discoloration and slight clay/sand smearing Medium strong to strong foliated dark grey mottlet light grey micaceous (psammitic) SCHIST. Unweathered to partially weathered. 2.65m - 3.70m BGL: 2 Fracture sets - F1: Fractures are dipping 0-20 degrees, very closely to closely spaced, smooth planar to smooth stepped, with slight clay smearing. F2: Fractures are dipping 70-85 degrees, very closely to medium spaced, smooth undulating with slight clay smearing. 3.70m - 5.50m BGL: 2 Fracture sets - F1: Fractures are dipping 10-30 degrees, very closely to medium spaced, smooth undulating to smooth undulating, with slight clay smearing. F2: Fractures are dipping 50-70 degrees, medium to widely spaced, smooth undulating to smooth stepped with slight clay and sand smearing.			
Remarks No groundw: Borehole car Standpipe in Plain standp	ater encour rried out to stalled in b ipe installe	ntered. 5.50m BC orehole u d from 2.5	GL. Ipon comp 50m BGL	oletion. SI to GL with	otted standpipe instal n a bentonite seal and	lled from 5 d a raised	i.50m - 2.50m cover.	BGL with a pea gravel surround.	Scale (approx) 1:50 Figure N 12087-0	C lo .	ogged EE/AM 2.BH01

		Grour	nd In		gations Ire ww.gii.ie	land	Ltd	Site ATU Regional Sports HUB	Borehole Number RC02
Machine: B	ater		Casing 103		r ed to 10.00m		Level (mOD) 86.58	Client	Job Number 12087-07-22
Core Dia: 98 Method : R		d	Locatio 61		913443.8 N	Dates 17	//11/2022	Engineer Tobin	Sheet 1/1
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kate Variet
0.00	34	16.8	4.8			86.48	(1.95)	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets. Driller notes: Grey clay onto rock. Recovery consists of light brown mottled grey and black slightly sandy gravelly CLAY. Gravel is angular to subrounded fine to coarse.	
2.50 2.90 3.90 4.00	81.33	3 81.33	33.33	20		84.53 83.68	(0.85)	Medium strong foliated light to dark grey mottled greenish grey and orange micaeous (psammitic) SCHIST. Partly to distinctly weathered. 2.05m - 2.90m BGL: 2 Fracture sets - F1: Fractures are dipping 0-30 degrees, very closely to closely spaced, smooth planar to smooth undulating with discolouration. F2: Fractures are dipping 40-60 degrees, closely to widely spaced, rough undulating to rough stepped withslight clay smearing and discolouration (orange) Medium to strong foliated light to dark grey mottled white micaeous (psammitic) SCHIST. Unweathered to partly weathered. 2.90m - 4.50m BGL: 2 Fracture sets - F1: Fractures are dipping 0-20 degrees, closely to medium spaced, smooth planar to smooth undulating, slight clay smear. F2: Fractures are dipping 40-60 degrees, closely to	
5.00 5.50 Remarks	90	90	67.33	9		81.08		F2: Fractures are dipping 40-60 degrees, closely to widely spaced, smooth undulating smooth stepped with slight clay smearing and discolouration (orange) 4.50m - 5.00m BGL: 1 Fracture set - F1: Fractures are dipping 0-30 degrees, very closely to medium spaced, smooth planar to smooth undulating, clean Complete at 5.50m	Logged
No groundw Borehole car	ater encoui rried out to	ntered. 5.50m BG	iL.					(approx) 1:50 Figure N	CE/AM No. 07-22.RC02

	Ground Investigations www.gii.ie					eland	Ltd	Site ATU Regional Sports HUB		N	orehole umber RC03
	vater		Casing 103		er sed to 10.00m		Level (mOD) 85.21	Client		N	ob umber)87-07-22
Core Dia: 9 Method: F		d	Locatio 61		913537.4 N	Dates 17	7/11/2022	Engineer Tobin		S	heet 1/1
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00	16	0	0			85.11	0.10	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets. Poor recovery. Driller notes: Grey clay. Recovery consists of brown mottled grey to dark grey slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse.			
2.50 2.50-2.95	46.66	3 0	0		7,6/8,7,9,11 SPT(C) N=35	82.71	2.50	Poor recovery. Driller notes: Grey clay. Recovery consists of light greenish grey mottled brown and dark grey slightly sandy slightly gravelly CLAY with occasional subangular cobbles. Gravel is angular to subrounded fine to coarse.			
4.00 4.00-4.38 5.00	83.33	88.8	22.66	9	8,12/15,25,10 SPT(C) 50/225	81.21	4.00	Medium strong foliated grey to black mottled white micaceous (semi-pelitic) SCHIST. Partially weathered.			
5.50				15			(3.10)	4.00m - 7.10m BGL: 2 Fracture sets: F1: Fractures are dipping 0-30 degrees, very closely to closely spaced, subplanar to subundulating with slight clay smear. F2:			
6.00	100	76.66	24	22			(3.10)	Fractures are dipping 50-70 degrees, very closely to medium spaced smooth planar to smooth undulating with slight clay smearing.			200 - 100 -
7.00 7.10	100	78.66	54	11		78.11	7.10	Medium strong to strong massive grey-greenish grey mottled dark grey QUARTZITE with slight pyrite veining. Unweathered to partially weathered 7.10m - 8.50m BGL: 1 Fracture set - F1: Fractures are dipping 40-70 degrees, very closely to medium spaced, smooth planar to smooth undulating with slight clay/sand smearing.			
8.50						76.71	8.50	Complete at 8.50m	\(\frac{1}{2}\)		
Remarks No groundw Borehole ca Standpipe ir	rried out to estalled in b	8.50m BG orehole up	pon comp	letion. S	lotted standpipe insta	alled from 8	5.50m - 2.50m	BGL with a pea gravel surround.	Scale (approx)	L	ogged y
Plain standp	oipe installe	d from 2.5	0m BGL t	to GL wit	h a bentonite seal an	d a raised	cover.		1:50 Figure N 12087-0		CE 2.RC03

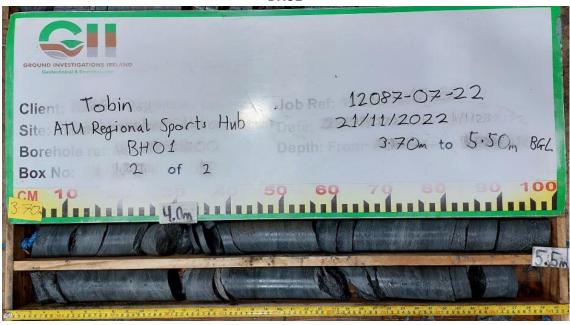
	Ground Investigations I						Ltd	l	Site ATU Regional Sports HUB			Borehole Number RC04		
	vater	7	Casing 10		er sed to 16.00m		Leve 79.03	el (mOD)	Client		N	ob umbe		
Core Dia: 9 Method: F		ed	Locatio 61		E 913345.8 N		5/11/2 5/11/2		Engineer Tobin		S	heet 1/2		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	(Thi	Depth (m) ckness)	Description	Legend	Water	Ins	tr	
0.00						78.83		(0.20) 0.20	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets. Poor recovery. Driller notes gravelly clay. Recovery consists of greyish brown slightly sandy gravelly CLAY. Gravel is subangular to					
	16							(2.30)	subrounded fine to coarse					
2.50 2.50-2.95	7				5,6/8,6,9,10 SPT(C) N=33	76.53		2.50	Poor recovery. Driller notes silty clay with cobbles onto sandy silty clay with cobbles. Recovery consists of brownish grey to dark grey slightly sandy gravelly silty CLAY. Gravel is subangular to subrounded fine to coarse.	X				
4.00 4.00-4.45	10				6,7/9,11,15,14 SPT(C) N=49			(3.00)				00 00 00 00 00 00 00 00 00 00 00 00 00	20 (\$ 20 P) 005 005 00 (\$ 20 P) 005 005 00 (\$ 20 P) 005 005 005 005 005 005 005 005 005 00	
5.50 5.50-5.95	13				7,8/6,9,10,12 SPT(C) N=37	73.53		5.50	Poor recvoery. Driller notes sand onto sandy gravel. Recovery consists of grey silty slightly gravelly fine to coarse SAND with occasional subrounded cobbles. Gravel is angular to subrounded fine to coarse.			10 C	5.	
7.00 7.00-7.45	13				6,8/5,7,6,8 SPT(C) N=26			(4.50)				200 - 100 -	ೂಗಿ ಆರೋಪಿಸಿದರು. ಆಗುತ್ತಿಯೇ ಅರ್ಥಿಯ ಕ್ಷೇತ್ರಿಯ ಕ್ಷೇತ್ರಿಯೇ ಆರಂಭದಿಸುವ ಅನ್ನು ಆರಂಭದಿಸುವ ನಿರ್ದೇಶ್ ಕ್ಷಾತ್ರಿಯ ಕ್ಷೇತ್ರಿಯ ಕ ಆರೋಪಿಸಿದರು. ಅನ್ನು ಅರ್ಥಿಯಲ್ಲಿ ಸಂಪೂರ್ಣಿಸಿದರು. ಆರಂಭದಿಸುವ ಅನ್ನು ಅರ್ಥಿಯಲ್ಲಿ ಸಿಲ್ಲಿಯಲ್ಲಿ ಸಿಲ್ಲೆಯಲ್ಲಿ ಅನ್ನು ಅರ್ಥಿಯ ಸಂ ಆರಂಭದಿಸುವ ಅನ್ನು ಅರ್ಥಿಯಲ್ಲಿ ಸಿಲ್ಲೆಯಲ್ಲಿ ಸಿಲ್ಲೆಯಲ್ಲಿ ಅನ್ನು ಅನ್ನು ಅರ್ಥಿಯಲ್ಲಿ ಸಿಲ್ಲೆಯಲ್ಲಿ ಸಿಲ್ಲೆಯಲ್ಲಿ ಅನ್ನು ಅನ್ನು	
8.50 8.50-8.80	50				8,10/25,25 SPT(C) 50/150								. 00700 kg 3,08 kg 5,08700 kg 3,870 kg 5,08700 kg 3,087 kg 5,087 k	
10.00 Remarks No groundw Borehole ca	/ater enco	untered.	-	<u> </u>			<u> </u>		I.	Scale (approx)	L B	ogge y	d d	
Borehole ca Standpipe ir Plain standp	rried out to nstalled in pipe install	o 16.0m Borehole u ed from 4.0	GL. upon comp 0m BGL to	oletion. S GL with	ilotted standpipe insta a bentonite seal and	alled from 1 a raised c	6.0m over.	to 4.0m	GBL with a pea gravel surround.	1:50		CE		
										Figure N 12087-0		2.RC()4	

		Grou	nd In		igations Ire vw.gii.ie	land	Ltd	Site ATU Regional Sports HUB		Borehole Number RC04	
Machine: Bo	ater			Diamete 2mm cas	sed to 16.00m		Level (mOD) 79.03	Client		N	ob lumber 087-07-22
Core Dia: 98		ed .	Locatio		E 913345.8 N		5/11/2022- 5/11/2022	Engineer Tobin		SI	heet 2/2
Denth	TCR	SCR	RQD	7720.5 L	910040.011			TODITI		-	2/2
Depth (m)	(%)	(%)	(%)	FI	Field Records 6,7/5,9,8,10	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00-10.45	20				SPT(C) N=32	69.03 67.53	(1.50)	Poor recovery. Driller notes sandy gravel. Recovery consists of grey to dark grey slightly silty sandy angular to subrounded fine to coarse GRAVEL with occasional subrounded cobbles. Poor recovery. Driller notes sand and rock. Recovery consists of POSSIBLE WEATHERED			
	37	11	0	NI		00.00	(1.50)	ROCK: Grey to dark grey very clayey slightly sandy angular to subrounded fine to coarse GRAVEL of schist. 11.50m - 13.0m BGL: Non-Intact			1000 - 1 (1000 - 1000 -
13.00	53	37	20	14		66.03		Medium strong to strong foliated dark grey mottled white and light grey micaceous pelitic SCHIST with some quartz. Slightly weathered. 13.0m - 14.50m BGL: 2 Fracture sets - F1: Fractures are dipping 10 - 30 degrees, very closely to medium spaced, smooth planar to smooth undulating, with some clay smearing.			100 (100 100 100 100 100 100 100 100 100
14.50	100	86	58	10		63.03		F2: Fractures are dipping 50 - 70 degrees, very closely to medium spaced, rough planar to rough undulating, with slight clay smearing 14.50m - 16.0m BGL: 2 Fracture sets - F1: Fractures are dipping 10 - 30 degrees, very closely to medium spaced, smooth planar to smooth undulating, clean. F2: Fractures are dipping 60 - 80 degrees, closely to widely spaced, rough undulating, clean			
16.00								Complete at 16.00m			
Remarks									Scale (approx)	Lo B	ogged y
									1:50 Figure I	lo.	CE
											2.RC04

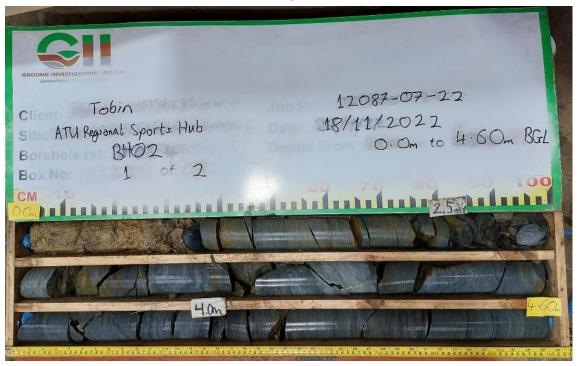
Grou		igations Ire	land	Ltd	Site ATU Regional Sports HUB	Borehole Number RC05			
Machine : Beretta T47 Flush : water	Casing Diameter 102mm cas	er sed to 10.00m		Level (mOD) 77.17	Client			ob umber 87-07-22	
Core Dia: 98 mm Method: Rotary Cored	Location 617759.1 E	E 913270.9 N	Dates 17	7/11/2022	Engineer Tobin		Sheet 1/2		
Depth (m) TCR SCR (%)	RQD (%) FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	
22			77.07	0.10	Brown slightly sandy slightly gravelly TOPSOIL wit grass and rootlets. Poor recovery. Driller notes gravelly clay onto boulder. Recovery consists of greenish grey mottled brown slightly sandy slightly gravelly silty CLAY with occasional subrounded cobbles. Grave is subangular to subrounded fine to coarse.	× × × × × × × × × × × × × × × × × × ×	4 PM B DWW D D V W B DWW D O V W B DWW D W V V V V V V V V V V V V V V V V		
2.50 2.50-2.80		10,11/25,25 SPT(C) 50/150	74.67		Poor recovery. Driller notes gravel. Recovery consists of grey to black mottled white angular to subrounded fine to coarse GRAVEL with occasional subangular cobbles.		,00 Lano 8 00 n 0 0 Lano 8 0 La		
4.00 4.00-4.38 50 15 5.50	0 NI	9,10/15,25,10 SPT(C) 50/225	72.47	4.70	Weak to medium strong foliated dark grey to black micaceous pelitic SCHIST with some clay smearing. Moderately weathered. 4.70m - 5.60m BGL: Non-Intact		<u> </u>		
87 38 6.60	16		71.57	5.60	Moderately weak to medium strong foliated light grey to dark grey mottled brown micaceous psammitic SCHIST with some clay banding and smearing and possible talc. 5.60m - 6.60m BGL: 2 Fracture sets - F1: Fractures are dipping 0 - 20 degrees, very closely to closely spaced, smooth planar to smooth undulating with some clay smearing. F2: Fractures are dipping 50 - 80 degrees, closely to medium spaced, smooth undulating		U.n.O.O PONO B UV.n.O.O PONO B UV.n.O.O PONO B UV.		
7.70 57 23	0 14	y NI		(2.90)	to smooth stepped, with some clay smearing 6.60m - 7.70m BGL: Non-Intact		2,500 45,500 8 00 500 0 45,500 8 00 500 0 45,500 8 00 J		
100 67 10.00 Remarks	7 22		68.67	8.50	Medium strong foliated light grey to dark grey mottled cream micaceous psammitic SCHIST with possible talc. Partially weathered. 7.70m - 10.0m BGL: 2 Fracture sets - F1: Fractures are dipping 0 - 20 degrees, very closely to closely spaced, smooth planar to smooth undulating, with slight clay smearing and brigh lustre. F2: Fractures are dipping 60 - 80 degrees, closely to medium spaced,	Scale	000 Wan0 8 W n00 Wan0 8 W n00 Wan0 8 W n00 W	Pabbo	
No groundwater encountered. Borehole carried out to 10.0m E Standpipe installed in borehole Plain standpipe installed from 1	upon completion. S	lotted standpipe insta a bentonite seal and	illed from 1 a raised co	0.0m to 1.0m over.	GBL with a pea gravel surround.	1:50 Figure N	о.	CE	

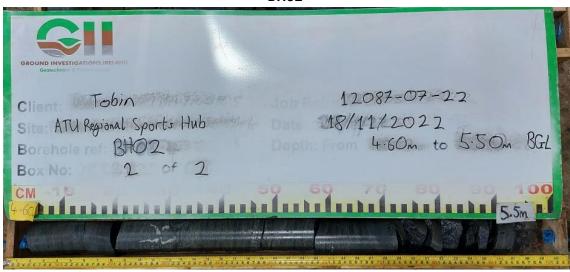
		Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Site ATU Regional Sports HUB	Borehol Number RC05					
Machine : Beretta T47 Flush : water				Diamete			Level (mOD) 77.17	Client			Job Number 12087-07-22		
Core Dia: 9	8 mm		Locatio	n		Dates		Engineer		SI	heet		
Method: Rotary Cored		ed			913270.9 N	17/11/2022		Tobin			2/2		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr		
						67.17		smooth planar to smooth undulating, with slight clay smearing Complete at 10.00m					
Remarks									Scale (approx) 1:50		ogged y CE		
									Figure N 12087-0		RC05		

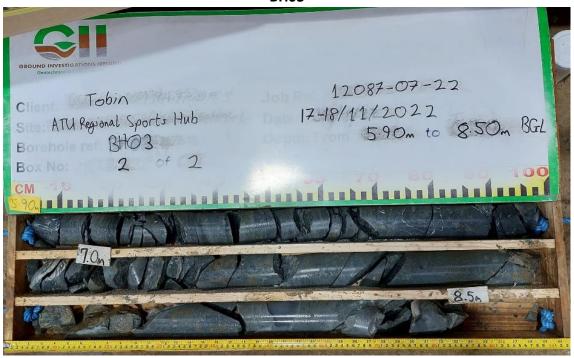
		Ground Investigations Ireland Ltd www.gii.ie							Site ATU Regional Sports HUB	Borehole Number RC06		
Machine: Beretta T47 Flush: water Core Dia: 98 mm Method: Rotary Cored				Diamete 2mm cas	r sed to 7.00m	Ground Level (mOD) 77.41			Client			ob lumber 087-07-22
			Locatio 61	Dates 16/11/2022			Engineer Tobin		s	Sheet 1/1		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	(Thi	Depth (m) ckness)	Description	Legend	Water	Instr
0.00	48	6	4			77.21 75.21		(2.00) (2.20)	Brown slightly sandy slightly gravelly TOPSOIL with grass and rootlets. Poor recovery. Driller notes sand and clay onto rock. Recovery consists of greyish brown mottled dark grey slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is angular to subrounded fine to coarse. Weak to medium strong foliated grey to dark grey			
2.20 2.50 3.30	97	77	61	13		73.31		(1.90)	weak to medium strong foliated grey to dark grey micaceous SCHIST with some quartz veining. Unweathered to moderately weathered. 2.20m - 2.80m BGL: 2 Fracture sets - F1: Fractures are dipping 20 - 50 degrees, very closely to closely spaced, smooth planar to smooth undulating, with some clay smearing. F2: Fractures are dipping 60 - 85 degrees, closely spaced, smooth undulating, with slight clay smearing 2.80m - 4.10m BGL: 1 Fracture set - F1: Fractures are dipping 40 - 60 degrees, very closely to widely spaced, smooth planar to smooth undulating, with slight clay smearing Strong foliated greenish grey to dark grey			
4.305.506.00	100	81	71	12				(2.90)	micaceous psammitic SCHIST with slight quartz and pyrite veining. Unweathered to partially weathered. 4.10m - 7.0m BGL: 2 Fracture sets - F1: Fractures are dipping 40 - 60 degrees, very closely to widely spaced, smooth planar to smooth undulating, clean. F2: Fractures are dipping 70 - 90 degrees, closely to widely spaced, smooth undulating to rough stepped, with slight clay smearing			
7.00						70.41		7.00	Complete at 7.00m			
Remarks No groundw Borehole ca Borehole ba	rried out to	7.0m BGI								Scale (approx) 1:50 Figure I 12087-0	No.	ogged Y CE 2.RC06

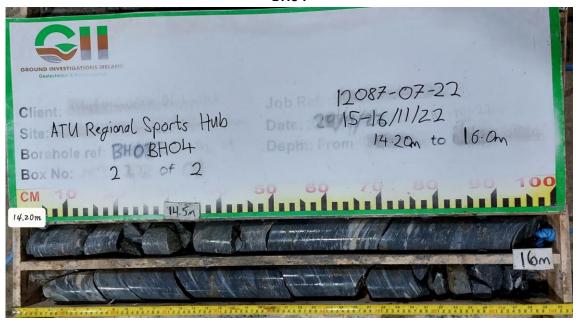

Ground Investigations Ireland Ltd www.gii.ie							Site ATU Regional Sports HUB	Borehole Number RC13	
Machine: Beretta T47 Flush: water Core Dia: 98 mm Method: Rotary Cored		-	Diamete 2mm cas	ed to 10.00m		Level (mOD) 91.17	Client	Job Number 12087-07-22	
		Location 617374.9 E 913110.8 N			Dates 17/11/2022		Engineer Tobin	Sheet 1/1	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
0.00	20.00	0	0			91.07	0.10	Poor recovery. Driller notes: Sandy gravelly Clay. Recovery consists of light brown to brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse.	
2.50 2.50-2.95	76.66	5			7,6/8,9,9,12 SPT(C) N=38	88.67	2.50	Driller notes: Gray clay onto rock. Recovery consists of brown mottled grey to dark grey slightly sandy very gravelly CLAY with some subangular cobbles. Gravel is angular to subrounded fine to coarse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.50 4.00				17		87.67	3.50	Medium strong foliated dark grey mottled white micaceous semi-pelitic SCHIST with slight pyrite veining. Partly to distinctly weathered. 3.50m - 5.9mBGL: 3 Fracture sets - F1: Fractures	
4.505.50	96.66	5		19			(2.40)	dipping 0-20 degrees, very closely to medium spacing, smooth planar to smooth undulating with slight clay smearing. F2: Fractures dipping 40-60 degrees, very closely to closey spaced, smooth planar to smooth undulating with slight clay smearing. F3: Fractures dipping 70-85 degrees closely to medium spacing, smooth undulating to smooth stepped with slight clay smearing.	
	100.0	90		14		85.27	5.90	Strong slightly foliated/interbedded (schist). Light grey to grey QUARTZITE with some pyrite veining. Unweathered to partially weathered. 5.90m - 7.00mBGL: 2 Fracture sets - F1: Fractures dipping at 0-30 degrees, smooth planar to smooth undulating, clean. F2: Fractures are dipping 50-80 degrees, very close to medium spaced, smooth planar to smooth undulating, clean.	
Remarks	ater enco	ntered				84.17	7.00	Complete at 7.00m	Logged
No groundw Borehole car Standpipe in Plain standp	rried out to istalled in b	8.50mBG orehole u	pon comp	eletion. Sl o GL with	lotted standpipe insta a bentonite seal and	lled from 8 I a raised c	.50m - 2.50mE over.	(approx) BGL with a pea gravel surround. 1:50 Figure N	CE No.

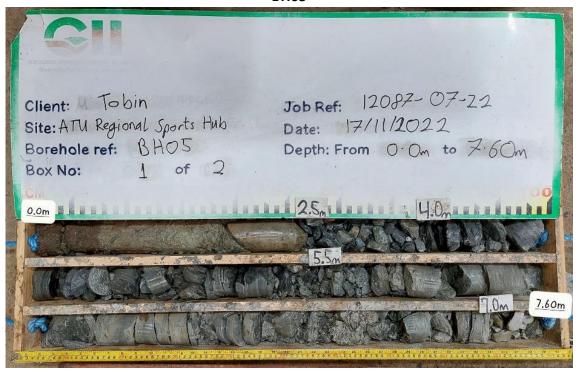
	Ground Investigations Ireland Ltd www.gii.ie						Site ATU Regional Sports HUB	Borehole Number RC14			
Machine : Beretta T47 Flush : water			_	Diamete 2mm cas	r ed to 10.00m	Ground Level (mOD) 88.51			Client	Job Numb 12087-0	
Core Dia: 98 mm Method: Rotary Cored		d	Locatio 61		913092.4 N	Dates 17/11/2022			Engineer Tobin	Sheet	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	De (r (Thick	pth n) (ness)	Description	Legend	Water
0.00	64	18.40	4.80			88.41		0.10	Topsoil Poor recovery. Driller notes: Gravelly clay onto rock. Recovery consists of greyish brown mottled dark grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse.		
1.50				20		87.01 86.11		1.50 (0.90) 2.40	Weak to medium strong foliated dark grey mottled orange to brown (pelitic) SCHIST. Distinctly weathered with frequent oxidisation. 1.50m - 2.40mBGL: 3 Fracture sets: F1: Fractures are dipping 0-20 degrees, very closely to medium spaced smooth planar to smooth undulating with slight clay smearing and orange oxidation. F2: Fractures are dipping 40-60 degrees, very closely to closely spaced,		
3.50 4.00	100	84	44.66	17				(3.10)	smooth planar to smooth undulating with some orange discoloration. F3: Fractures are dipping 70-85 degrees, very closely to medium spaced, smooth planar to smooth undulating with some orange discolouration. Strong to very strong foliated dark grey to black slightly micaeaous SCHIST with some pyritic veins. Unweathered to partly weathered. 2.40m - 4.00mBGL: 2 Fracture sets: F1: Fractures are dipping 0-20 degrees, very closely to medium spaced, smooth planar to smooth undulating with some slight orange discoloration (oxidisation). F2: Fractures are dipping 40-60 degrees, closely to widely spaced, smooth planar to smooth undulating with some slight		
4.50	100	96	85.33	6					orange discolouration. 4.00m - 5.5mBGL: 1 Fracture set: F1: Fractures are dipping 30-60 degrees, very closely to medium spaced, smooth planar to smooth undulating, clean.		
5.50						83.01		5.50	Complete at 5.50m		
Remarks No groundw: Borehole car	ater encou rried out to	ntered. 5.50mBGl	L.						Scale (approx) 1:50 Figure 1 12087-0	CE No.	

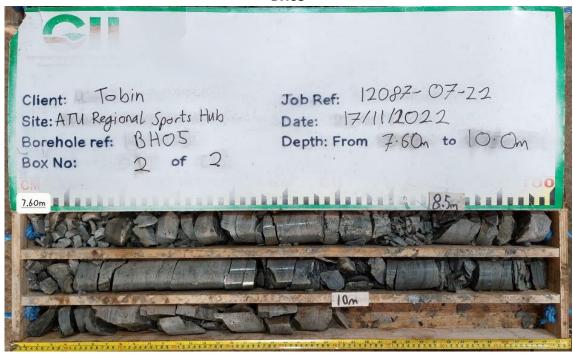

		Groui	nd In		igations Ire ww.gii.ie	land	Site ATU Regional Sports HUB	Borehole Number RC15				
Machine : Beretta T47 Flush : water				Diamete			Level (mOD) 83.18	Client		Job Numbe 12087-07-		
Core Dia: 98 mm Method: Rotary Cored		Locatio 61		913098.4 N	Dates 17	//11/2022	Engineer Tobin		Sheet 1/1			
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	/ater	Instr	
0.00 1.80 2.50 4.00 5.50	100.0	0 90.66	64.00	14		83.08 81.38	1.80	Poor recovery. Driller notes: Grey Clay. Recovery consists of brown slightly sandy slightly gravelly CLAY. Gravel fine to coarse. Weak to medium strong foliated light to dark grey slightly micaeous psammitic SCHIST with slight pyrrhotite veining. Partly weathered. 1.80m - 4.00mBGL: 2 Fracture sets - F1: Fractures are dipping 0-30 degrees, very closely to closely spaced smooth planar to smooth undulating with slight clay smearing. F2: Fractures are dipping 50-70 degrees, medium to widely spaced smooth undulating with slight clay smearing and orange discolouration. Medium to strong to strong foliated grey to black mottled white micaeous psammitic SCHIST with some quartz veining. Unweathered to partly weathered. 4.00m - 5.50mBGL: 1 Fracture set - F1: Fractures are dipping 0-30 degrees, very closely to medium spaced, smooth planar to smooth undulating, clean. Complete at 5.50m	Scale		ogged	
Borehole car	ried out to	5.50mBG	L. pon comp 0mBGL t	eletion. Sl o GL with	lotted standpipe instal a a bentonite seal and	led from 5 a raised o	.50m - 2.50ml cover.	BGL with a pea gravel surround.	1:50 Figure N	No.	CE 2.BH15	

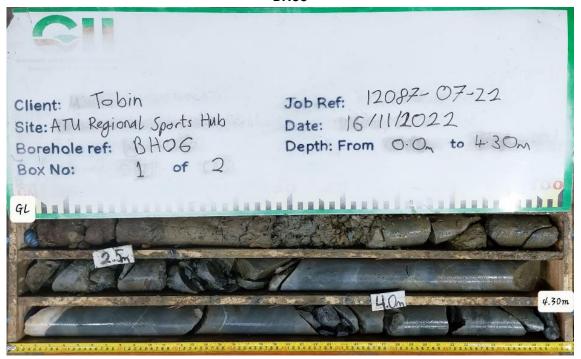

BH01

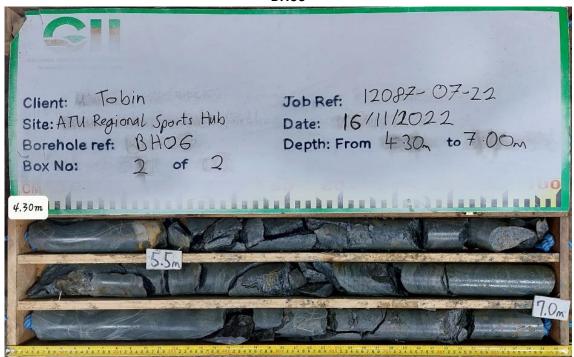

BH02

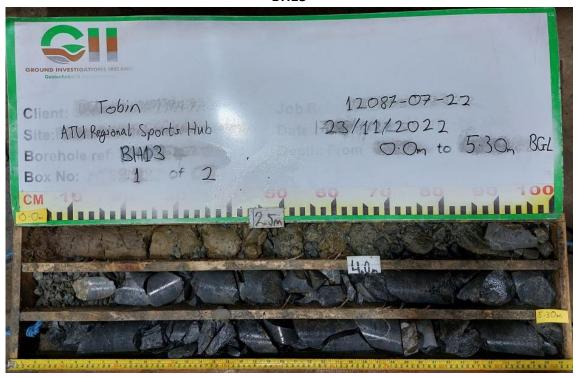

BH03

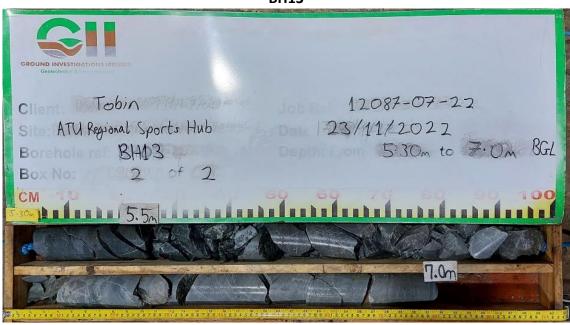


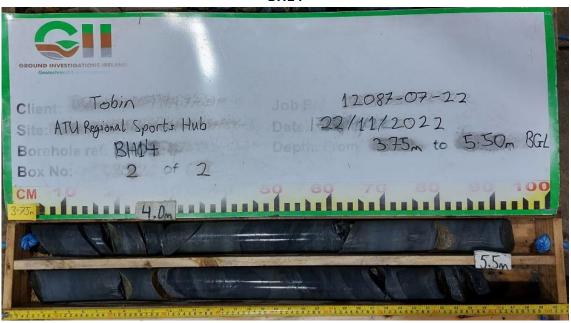

BH04

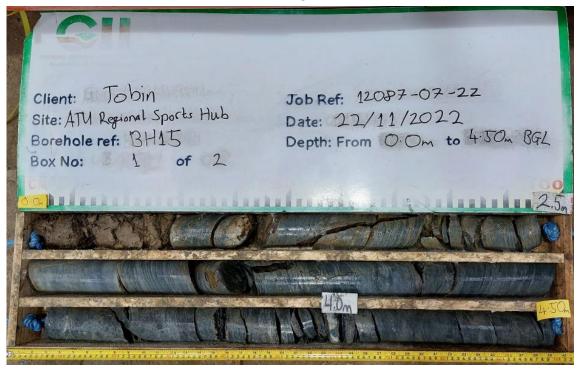


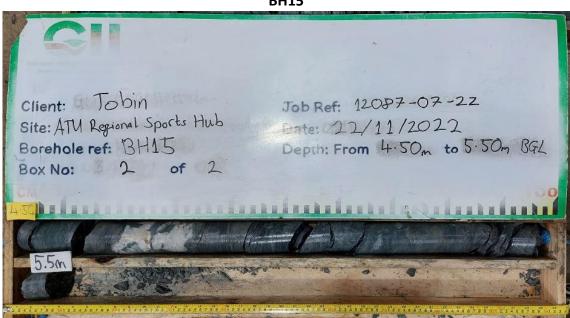

BH05

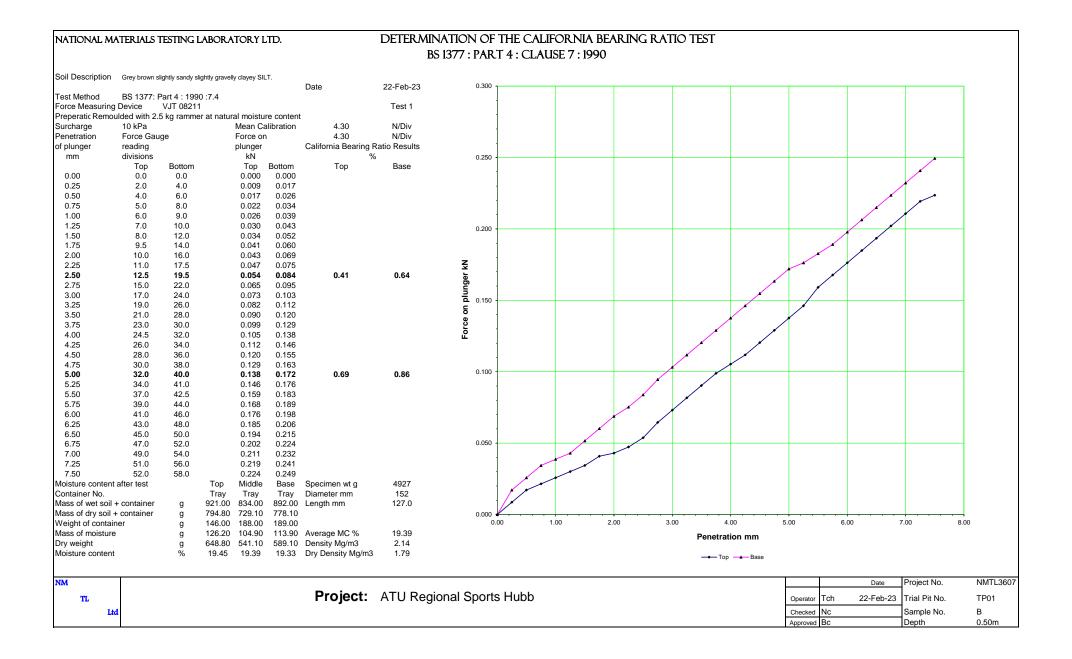


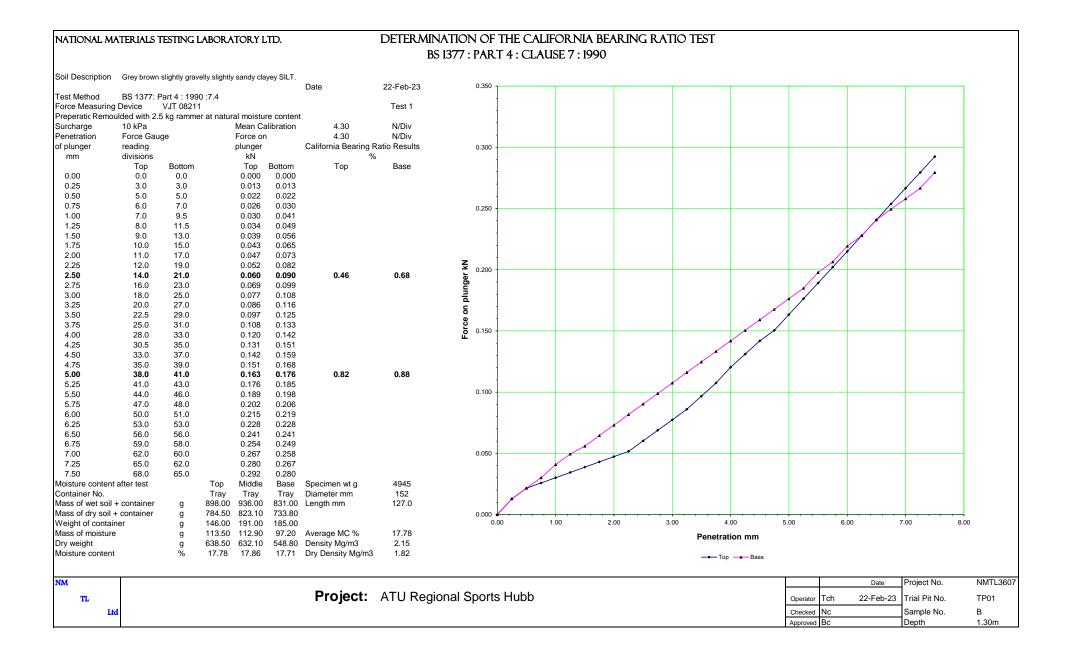

BH06

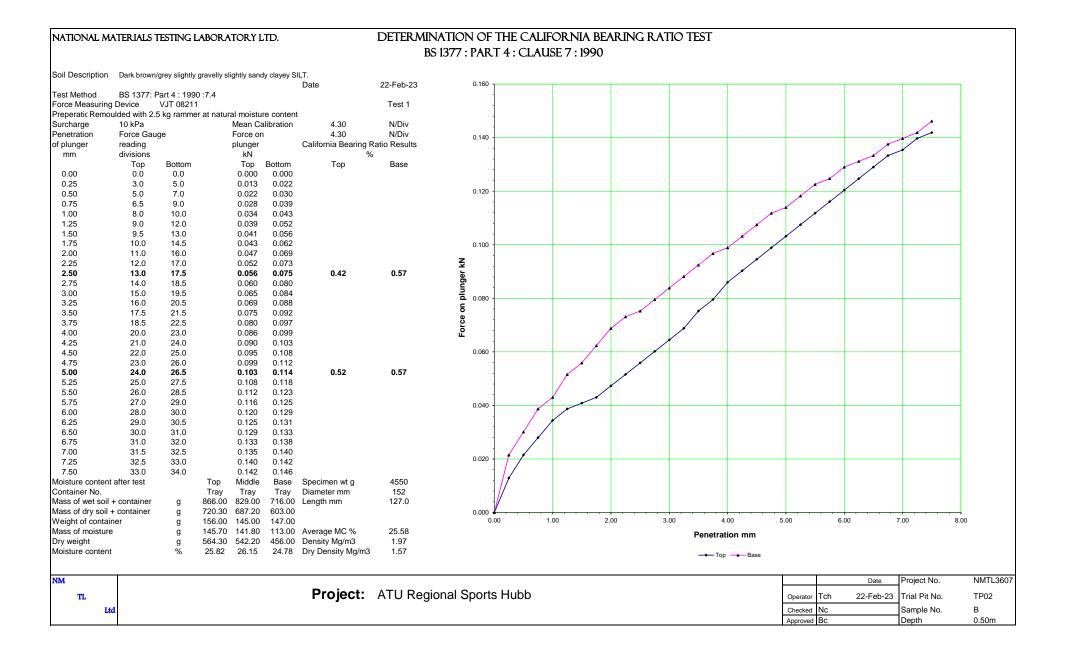

BH13

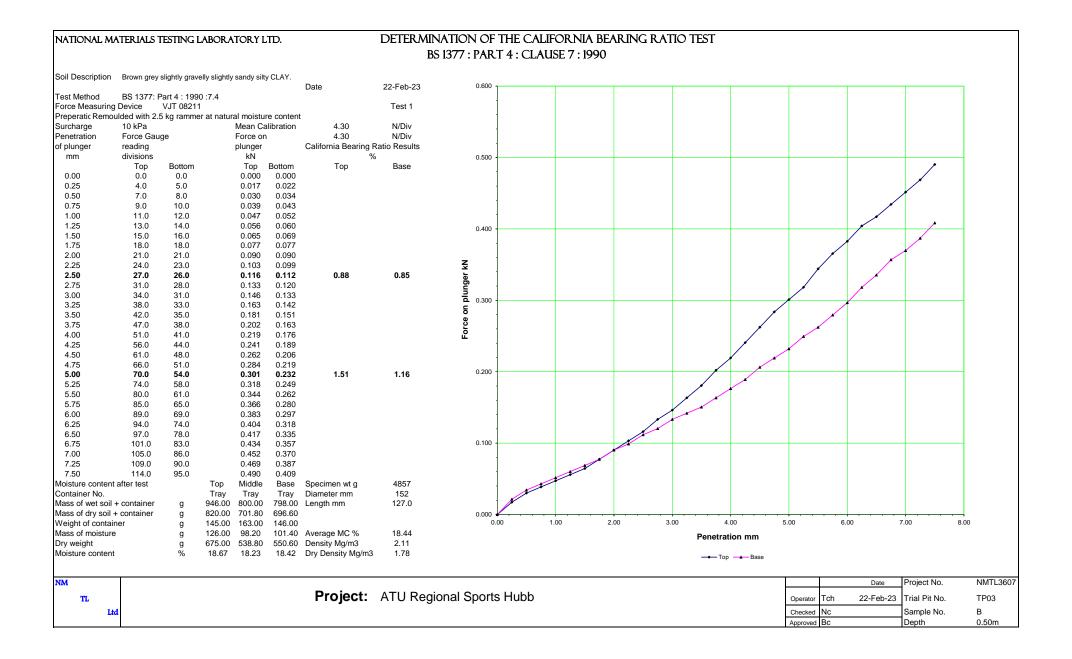


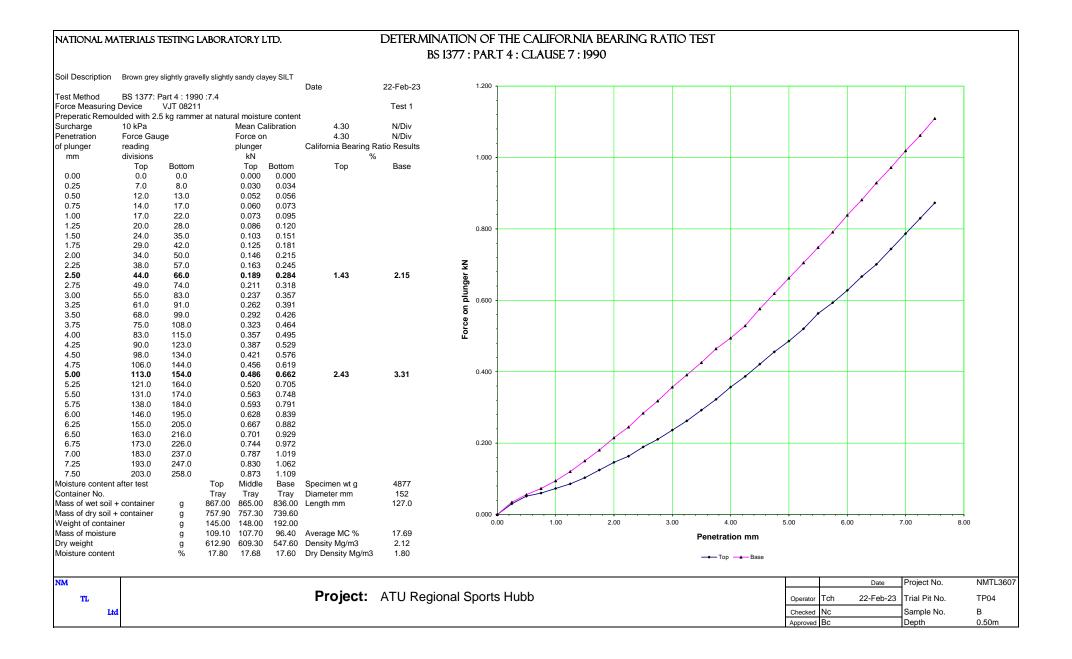

BH14

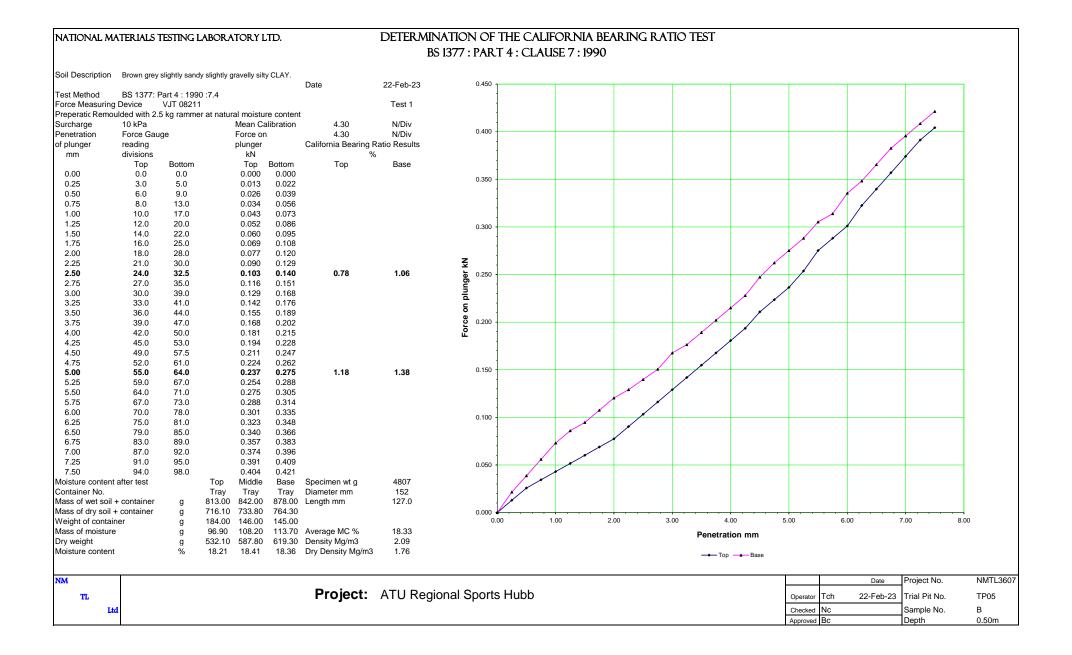

BH15

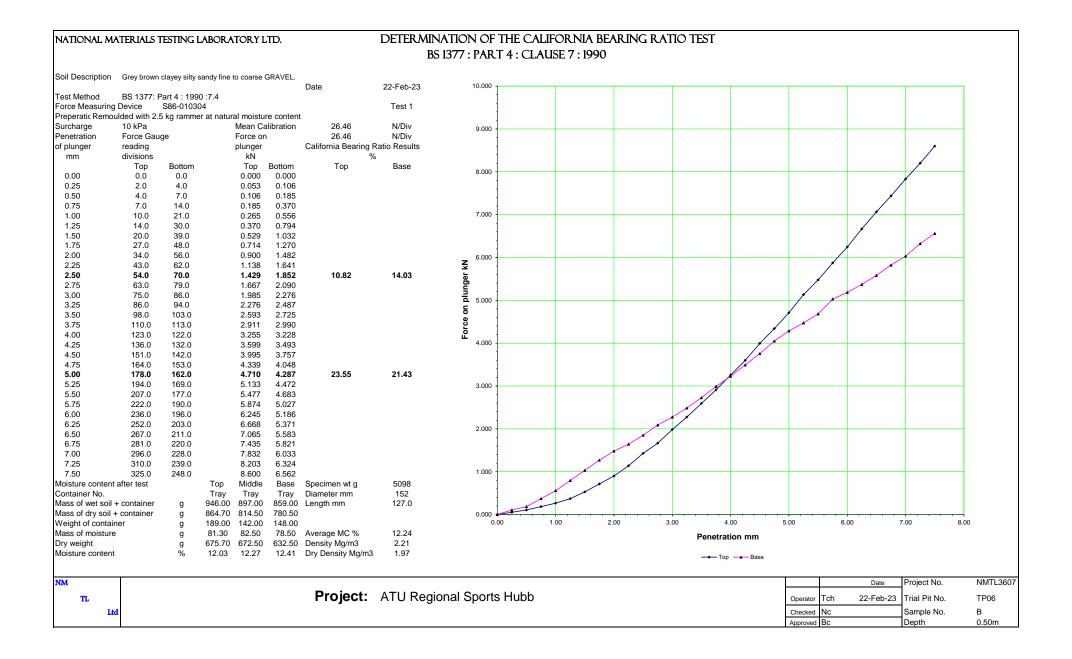


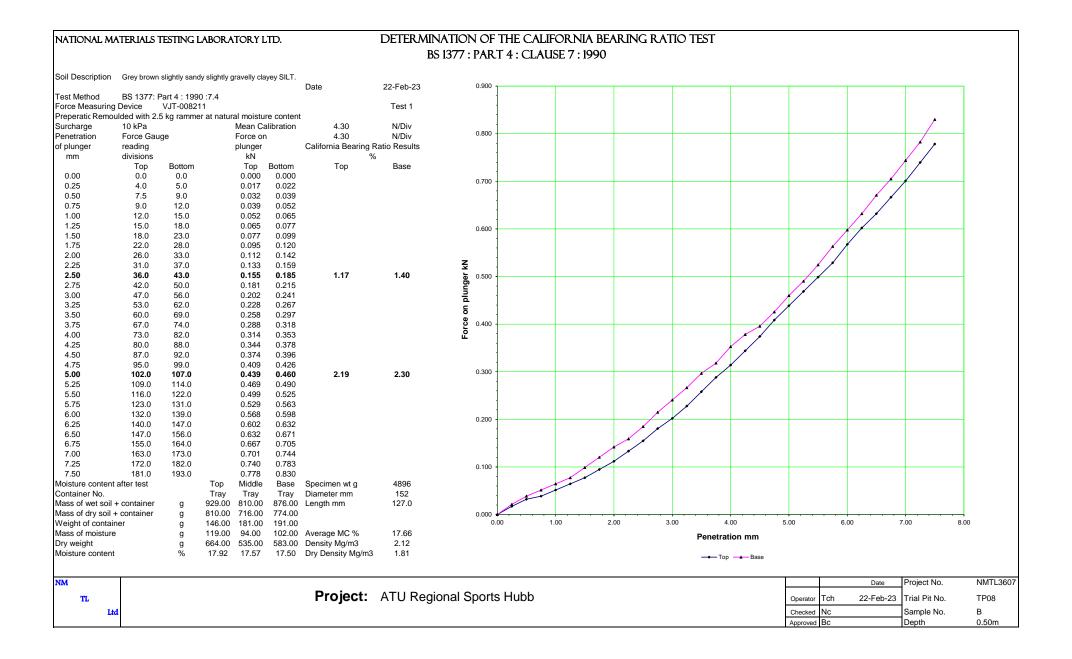


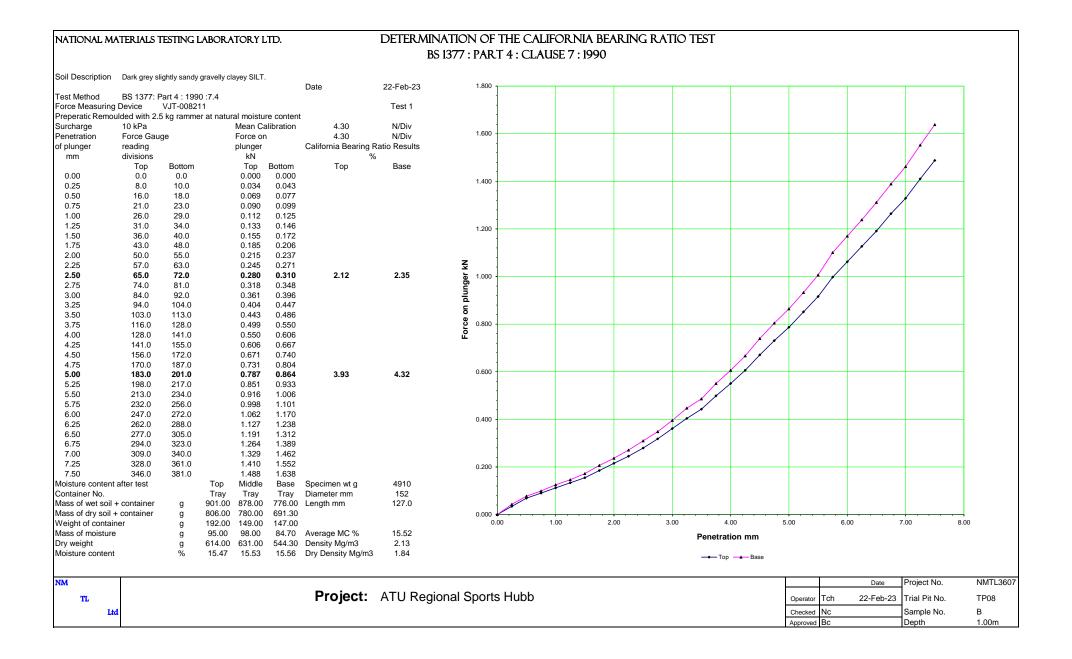

APPENDIX 6 – CBR Testing Results

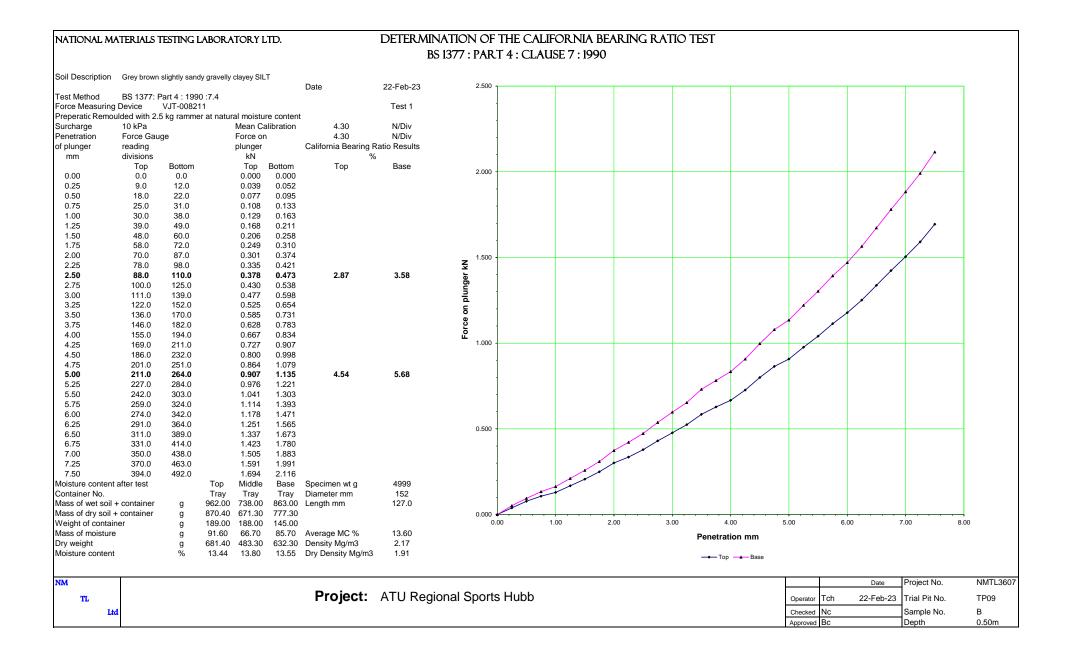


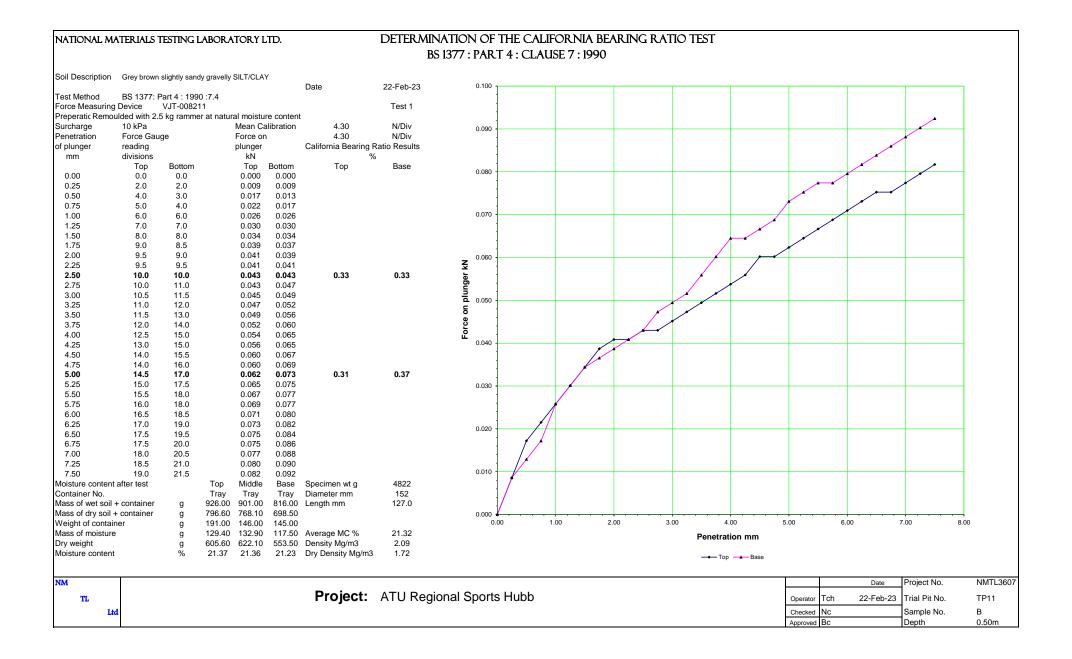












APPENDIX 7 – Laboratory Testing

National Materials Testing Laboratory Ltd.

SUMMARY OF TEST RESULTS

				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria	xial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	0.50	В	19.3		66.1	32	25	7						
TP01	1.30	В	17.8		77.4	29	25	4						
TP01	2.00	В	16.8		73.3	28	25	3						
TP02	0.50	В	26.0		52.4	38	30	8						
TP02	1.35	В	11.8		25.1	30	25	5						
TP03	0.50	В	18.0		81.5	29	24	5						
TP04	0.50	В	17.8		58.3	34	28	6						
TP05	0.50	В	18.6		52.5	32	26	6						
TP06	5.00	В	12.7		11.1	41	30	11						
TP08	1.00	В	17.6		42.1	36	28	8						
·														
ИTL	1	Notes :									Job ref No.	NMTL 3607	GII Project ID:	12087-07-22
			1. All BS te	ests carried	out using p	referred	(definitive) ı	method ur	nless otherw	vise stated.	Location	ATU Region	onal Sports Hub	b

NMTL LTD **ATU Regional Sports Hubb** Contract: Unit 18c, Tullow Industrial Estate Client: **Ground Investigations Ireland Ltd** Tullow Engineer: **Conor Finnerty County Carlow** GII Project ID 12087-07-22 Date: 27/02/2023 Tel: 00353 59 9180822 Sb Tested By: Checked: Bc Mob: 00353 872575508 Job ref No. **NMTL 3607** billa@nmtl.ie High 50-70 Very High Extremely High Low Intermediate 70 0-35 70-90 90 + 35-50 60 Plasticity Index 50 40 30 20 10 0 20 40 60 80 100 120 0 **Liquid Limit**

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	93.3
37.500	90.0
28.000	88.4
20.000	86.2
14.000	84.9
10.000	83.0
6.300	80.6
5.000	78.5
3.350	77.0
2.000	74.0
1.180	70.8
0.600	67.5
0.425	66.1
0.300	64.6
0.212	62.6
0.150	59.1
0.063	49.8

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		49.8	24.2			26.0	0.0	0.0

Date sample tested

NM

TL

Ltd

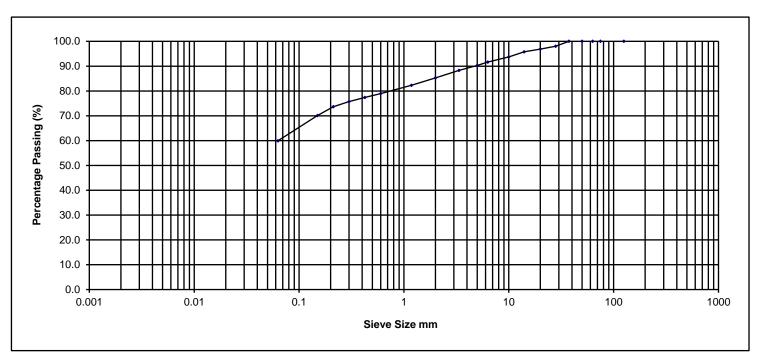
Operator

Sample Description Grey brown slightly sandy slightly gravelly clayey SILT.

Project No. BH/TP No.

NMTL 3607 TP01

ATU Regional Sports Hubb Project Nc Sb Checked Approved Bc GII PROJECT ID:12087-07-22 22/02/2023 Depth


Sample No.

В 0.50m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	98.1
20.000	96.9
14.000	95.8
10.000	93.7
6.300	91.7
5.000	90.3
3.350	88.3
2.000	85.3
1.180	82.3
0.600	78.9
0.425	77.4
0.300	75.7
0.212	73.7
0.150	70.1
0.063	59.9

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

С	lay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
			59.9	25.3			14.7	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Grey brown slightly gravelly slightly sandy clayey SILT.

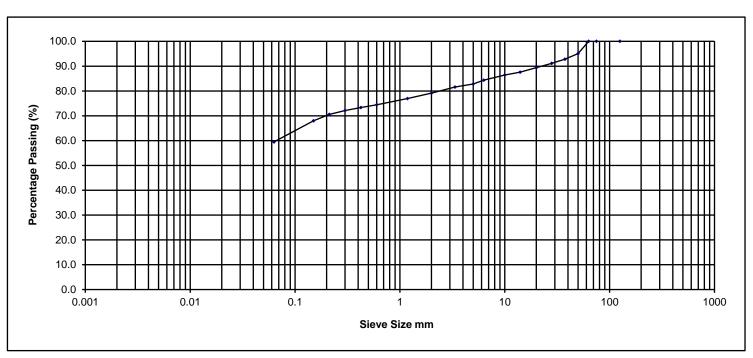
Project No. BH/TP No.

NMTL 3607 TP01

Project ATU Regional Sports Hubb

Sb Checked Nc Approved Bc

GII PROJECT ID:12087-07-22


Date sample tested 22/02/202

087-07-22 Sample No. 22/02/2023 Depth B 1.30m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	95.1
37.500	92.8
28.000	91.1
20.000	89.4
14.000	87.6
10.000	86.4
6.300	84.3
5.000	82.8
3.350	81.6
2.000	79.1
1.180	77.0
0.600	74.5
0.425	73.3
0.300	72.1
0.212	70.6
0.150	68.0
0.063	59.5

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
ı			Silt	Sand			Gravel		
l			59.5	19.6			20.9	0.0	0.0

Date sample tested

NM

TL

Ltd

Operator

Sample Description Grey brown slightly sandy slightly gravelly clayey SILT.

Project No. BH/TP No.

NMTL 3607 TP01

Project ATU Regional Sports Hubb

Sb Checked Nc Approved Bc

GII PROJECT ID:12087-07-22

087-07-22 Sample No. 22/02/2023 Depth

B 2.00m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	85.0		
50.000	83.1		
37.500	80.5		
28.000	78.3		
20.000	76.3		
14.000	73.4		
10.000	70.7		
6.300	67.4		
5.000	65.8		
3.350	64.5		
2.000	61.3		
1.180	57.9		
0.600	54.2		
0.425	52.4		
0.300	50.6		
0.212	48.5		
0.150	45.1		
0.063	35.7		
	· · · · · · · · · · · · · · · · · · ·		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		35.7	25.6			23.7	15.0	0.0

NM

TL

Ltd

Operator

Sample Description Dark brown/grey slightly gravelly slightly sandy clayey SILT.

Project No. BH/TP No.

NMTL 3607 TP02

В

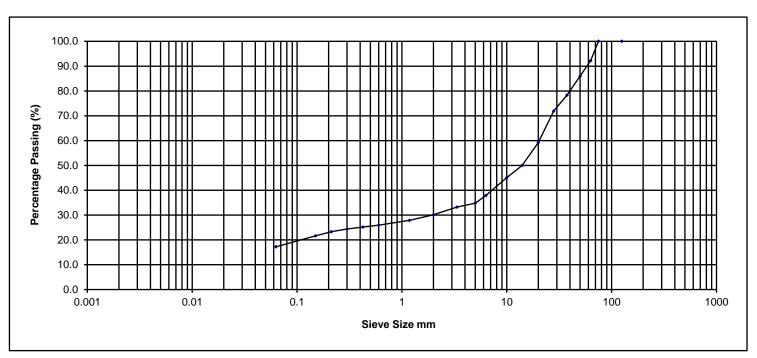
0.50m

ATU Regional Sports Hubb Project Nc Sb Checked Approved Bc

GII PROJECT ID:12087-07-22 Date sample tested 22/02/2023 Depth

Sample No.

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	92.2
50.000	86.0
37.500	78.3
28.000	71.9
20.000	59.2
14.000	50.0
10.000	45.1
6.300	37.9
5.000	34.8
3.350	33.2
2.000	30.1
1.180	27.9
0.600	25.9
0.425	25.1
0.300	24.4
0.212	23.3
0.150	21.6
0.063	17.2


NM

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

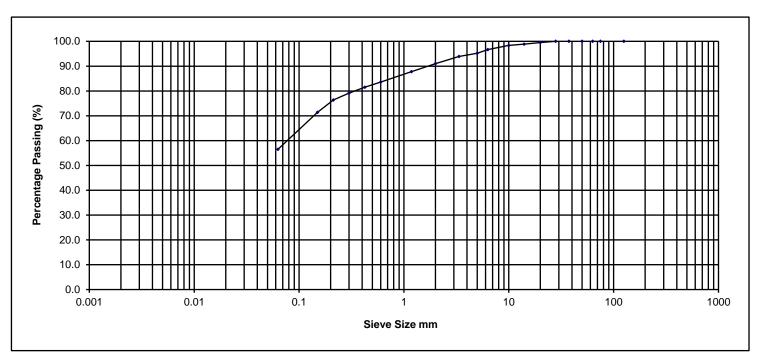
Percentage Particle Size

CI	ay F	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
			17.2	12.9			62.1	7.8	0.0

Sample Description Grey brown slightly sandy gravelly clayey SILT.

Project No. NMTL 3607
BH/TP No. TP02
Sample No. B

1.35m


Project ATU Regional Sports Hubb GII PROJECT ID:12087-07-22 Sample No.

Operator Sb Checked Nc Approved Bc Date sample tested 22/02/2023 Depth

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	100.0		
28.000	100.0		
20.000	99.5		
14.000	98.9		
10.000	98.4		
6.300	96.7		
5.000	95.2		
3.350	93.9		
2.000	91.0		
1.180	87.7		
0.600	83.6		
0.425	81.5		
0.300	79.2		
0.212	76.4		
0.150	71.4		
0.063	56.5		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		56.5	34.5			9.0	0.0	0.0

Date sample tested

NM

TL

Ltd

Operator

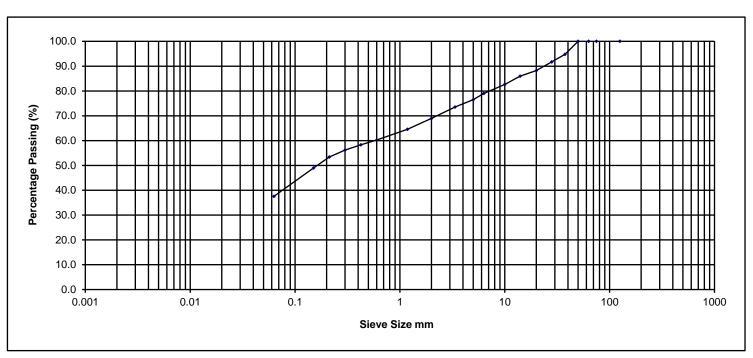
Sample Description Brown grey slightly gravelly slightly sandy clayey SILT

Project No. BH/TP No.

NMTL 3607 TP03

В

ATU Regional Sports Hubb Project Nc Sb Checked Approved Bc GII PROJECT ID:12087-07-22 22/02/2023 Depth


Sample No.

0.50m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	94.7		
28.000	91.7		
20.000	88.2		
14.000	86.0		
10.000	82.6		
6.300	79.0		
5.000	76.5		
3.350	73.5		
2.000	68.9		
1.180	64.6		
0.600	60.2		
0.425	58.3		
0.300	56.2		
0.212	53.4		
0.150	49.0		
0.063	37.6		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		37.6	31.3			31.1	0.0	0.0

Date sample tested

NM

TL

Ltd

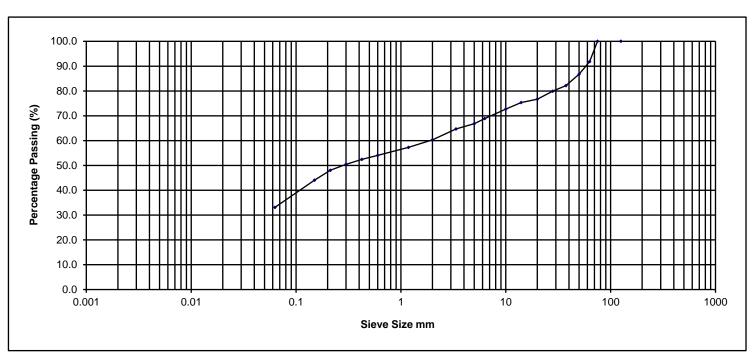
Operator

Sample Description Brown grey slightly gravelly slightly sandy clayey SILT

Project No. BH/TP No.

NMTL 3607 TP04

ATU Regional Sports Hubb Project Nc Sb Checked Approved Bc GII PROJECT ID:12087-07-22 22/02/2023 Depth


Sample No.

В 0.50m

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	91.9		
50.000	86.7		
37.500	82.2		
28.000	79.9		
20.000	76.7		
14.000	75.3		
10.000	72.7		
6.300	68.9		
5.000	66.8		
3.350	64.7		
2.000	60.3		
1.180	57.3		
0.600	54.1		
0.425	52.5		
0.300	50.5		
0.212	48.0		
0.150	44.1		
0.063	33.1		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

CI	ay Fine	e Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
		33.1	27.2	31.5	8.1	0.0

NM

TL

Ltd

Operator

Sample Description Brown grey slightly sandy slightly gravelly clayey SILT

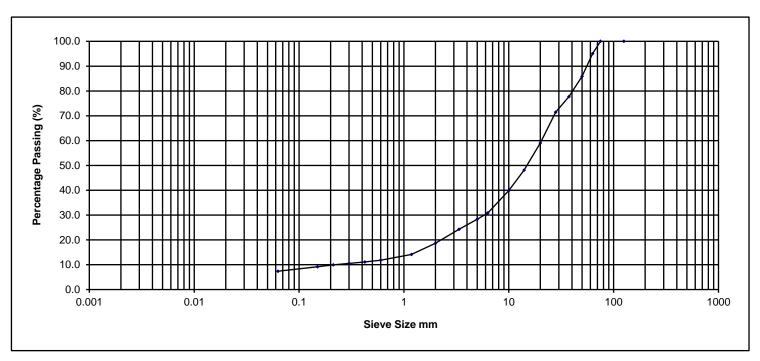
Project No. BH/TP No.

NMTL 3607 TP05

Project ATU Regional Sports Hubb GII PRO.

Sb Checked Nc Approved Bc Date sample tested

GII PROJECT ID:12087-07-22


087-07-22 Sample No. 22/02/2023 Depth

B 0.50m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	95.0
50.000	85.9
37.500	77.8
28.000	71.5
20.000	59.0
14.000	48.1
10.000	39.9
6.300	30.8
5.000	28.3
3.350	24.3
2.000	18.6
1.180	14.2
0.600	11.8
0.425	11.1
0.300	10.6
0.212	9.9
0.150	9.2
0.063	7.4

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		7.4	11.2			76.4	5.0	0.0

Date sample tested

NM

TL

Ltd

Sample Description Grey brown silty sandy fine to coarse GRAVEL.

Project No. BH/TP No.

NMTL 3607 TP06

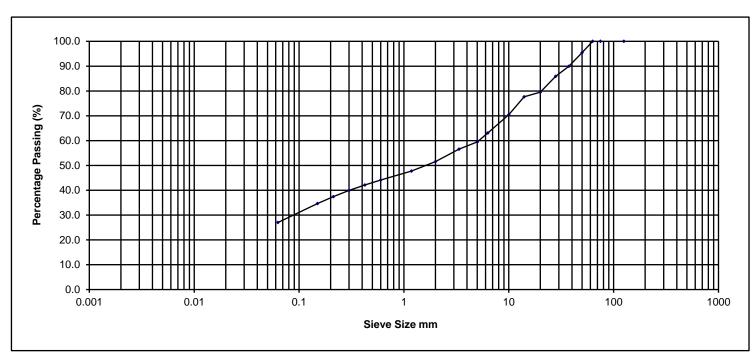
0.50m

Project ATU Regional Sports Hubb

Operator Sb Checked Nc Approved Bc

GII PROJECT ID:12087-07-22

Sample No.


22/02/2023 Depth

В

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	95.5		
37.500	90.0		
28.000	85.9		
20.000	79.5		
14.000	77.6		
10.000	70.5		
6.300	63.1		
5.000	59.5		
3.350	56.6		
2.000	51.6		
1.180	47.8		
0.600	44.1		
0.425	42.1		
0.300	40.0		
0.212	37.4		
0.150	34.6		
0.063	27.0		
	-		

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	/ Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		27.0	24.5			48.4	0.0	0.0

NM

TL

Ltd

Operator

Sample Description Dark grey slightly sandy gravelly clayey SILT.

Project No. BH/TP No. NMTL 3607 TP08

Project		ATU Regional Sports Hubb				
Sb	Checked	Nc	Approved	Вс		

GII PROJECT ID:12087-07-22 Sample Date sample tested 22/02/2023 Depth

Sample No.

B 1.00m

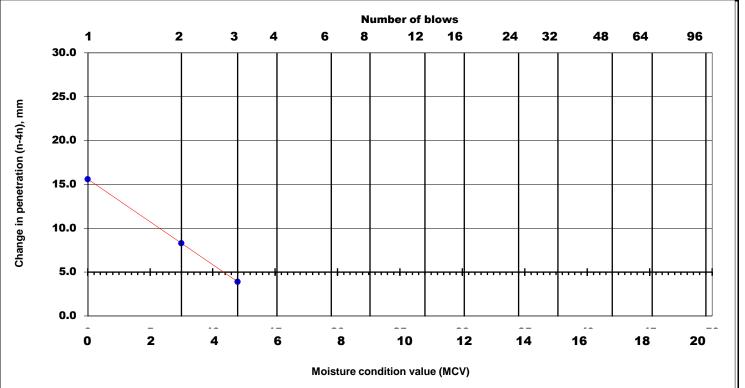
Single sample mass		
Initial sample mass		1448 g
Moisture content		19.4 %
Dry mass		1212.7 g
Mass retained		
on 20mm sieve	a	13.8 %

Project Name:	Job ref.	NMTL_3607	
ATU Regional Sports Hubb	GII Project ID	12087-07-22	
	BH/TP	TP01	
Soil description:	Sample no.	В	
Grey brown slightly sandy slightly gravelly clayey SILT.	Depth	0.50m	

MCV 4.3 Natural

Test method

SINGLE POINT MOISTURE CONDITION VALUE TEST


BS 1377 : Part 4 : 1990 : 5

Date Sampled	N/A
Date Received	03/02/2023

22/02/2023

Date Tested

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	55.5	15.6
2	47.0	8.3
3	42.5	3.9
4	39.9	
6	38.7	
8	38.7	
12	38.6	
16		
24		
32		
48		
64		
96		
128		
192		
256		

Operator	Checked	Approved	
Tch	Nc	Вс	

^{*} Delete as appropriate

Single sample mass		
Initial sample mass		1493 g
Moisture content		17.9 %
Dry mass		1266.0 g
Mass retained		
on 20mm sieve	g	3.1 %

Penetration

protrusion

59.4

50.2

45.6

41.8 40.6

40.2

40.0

40.0

mm

Change in

penetration

17.6

10.0

5.6 1.8

n to 4n

mm

SINGLE POINT MOISTURE CONDITION VALUE TEST

Project Name:		Job ref.	NMTL_3607	
	ATU Regional Sports Hubb		GII Project ID	12087-07-22
			BH/TP	TP01
Soil descrip	tion:		Sample no.	В
Grey brown s	Grey brown slightly gravelly slightly sandy clayey SILT.		Depth	1.30m
Test metho	d l	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
			Date Sampled	N/A
MCV	5.2	Natural	Date Received	03/02/2023

* Delete as appropriate

Total

n

number

of blows

2

3

6

8 12

16

MCV 5.2 Natural

	1	2 3	4	6	8	ber of b	16	24	32	48	64	96
30.0	•		, <u>-</u>		Ť	<u>-</u>						
25.0 -												
20.0 -												
15.0 -												
10.0 -												
5.0 ⊣							• • • • • • • • • • • • • • • • • • • •				·····	
0.0 -												
(2	4	6	8	3	10	12	2 1	4	16	18	20

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1513 g
Moisture content		16.9 %
Dry mass		1294.0 g
Mass retained		
on 20mm sieve	g	10.6 %

SINGLE POINT MOISTURE CONDITION VALUE TEST

Natural

Project Name:		Job ref.	NMTL_3607
ATU F	Regional Sports Hubb	GII Project ID	12087-07-22
		BH/TP	TP01
Soil description:		Sample no.	В
Grey brown slightly s	andy slightly gravelly clayey SILT.	Depth	2.00m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
		Date Sampled	N/A

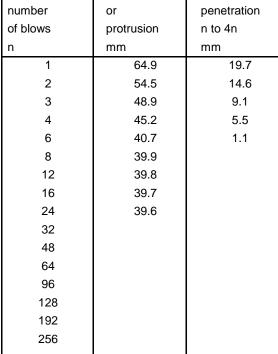
Date Received

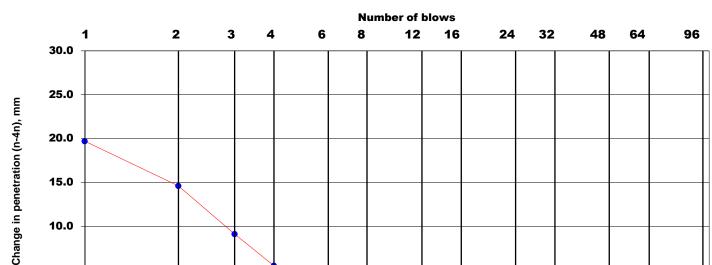
03/02/2023

* Delete as appropriate

Total	Penetration	Change in	
number	or	penetration	
of blows	protrusion	n to 4n	

MCV


10.0


5.0

0.0

0

6.3

Moisture condition value (MCV)

8

10

12

14

16

18

20

Operator Checked Approved **NMTL Ltd** Вс Tch Nc

4

6

2

Single sample mass		
Initial sample mass		1467 g
Moisture content		27.7 %
Dry mass		1149.0 g
Mass retained		
on 20mm sieve	a	23.7 %

SINGLE POINT MOISTURE CONDITION VALUE TEST					
	Project Name:	Job ref.	NMTL_3607		
	ATU Regional Sports Hubb	GII Project ID	12087-07-22		

Soil description:

Test method

MCV

Dark brown/grey slightly gravelly slightly sandy clayey SILT.

0.5

BS 1377 : Part 4 : 1990 : 5

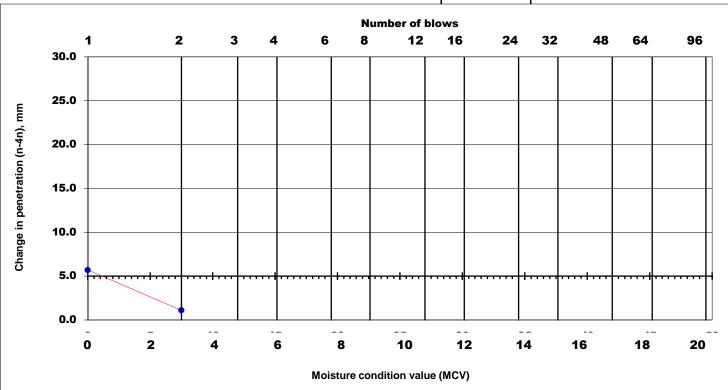
Natural

Sample no. Depth

TP02

BH/TP

0.50m


Date Tested 22/02/2023

N/A Date Sampled

Date Received 03/02/2023

' Delete	as	appropriate
----------	----	-------------

* Delete as appro	priate	
Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	53.6	5.7
2	48.8	1.1
3	48.3	
4	47.9	
6	47.8	
8	47.7	
12		
16		
24		
32		
48		
64		
96		
128		
192		

NMTL Ltd

256

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1406 g
Moisture content		11.4 %
Dry mass		1262.5 g
Mass retained		
on 20mm sieve	g	40.8 %

SINGLE POINT MOISTURE CONDITION VALUE TEST

Natural

Project Name:		Job ref.	NMTL_3607
ATU F	Regional Sports Hubb	GII Project ID	12087-07-22
		BH/TP	TP02
Soil description:		Sample no.	В
Grey brown slightly s	andy gravelly clayey SILT.	Depth	1.35m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
		Date Sampled	N/A

Date Received

03/02/2023

* Delete as appropriate

6

8

12

16

24

32

48

64 96

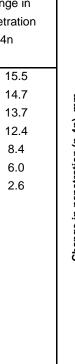
128 192

256

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	57.6	15.5
2	49.7	14.7
3	45.1	13.7
4	42.1	12.4

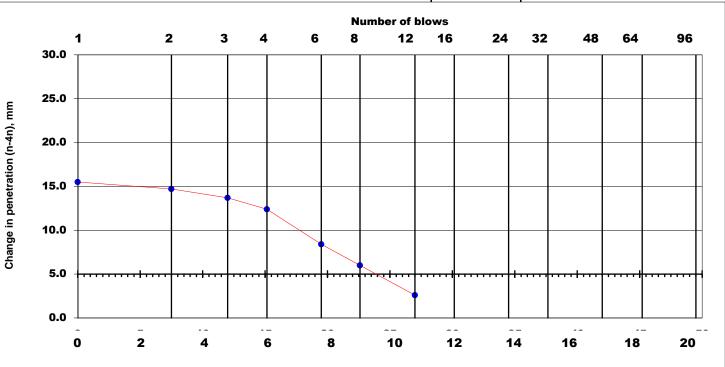
37.6

35.0


31.4

29.7

29.2


29.0

28.8

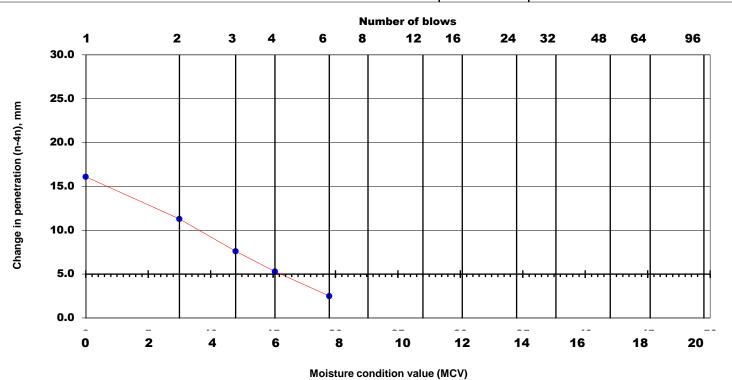
MCV

9.6

Moisture condition value (MCV)

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1536 g
Moisture content		18.3 %
Dry mass		1298.4 g
Mass retained		
on 20mm sieve	g	0.5 %


SINGLE POINT MOISTURE	CONDITION VALU	E TEST
-----------------------	-----------------------	--------

Project Name:		Job ref.	NMTL_3607	
ATU Regional Sports Hubb			GII Project ID	12087-07-22
			BH/TP	TP03
Soil description:				B 0.50m
Brown grey slightly gravelly slightly sandy clayey SILT				
Test metho	d I	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
			Date Sampled	N/A
MCV	6.2	Natural	Date Received	03/02/2023

* Delete as appropriate

Total Penetration Change in penetration n to 4n protrusion mm mm

number of blows n 16.1 63.5 11.3 2 54.8 3 49.8 7.6 5.3 4 47.4 2.5 6 44.6 8 43.5 12 42.2 16 42.1 24 42.1 32 48 64 96 128 192 256

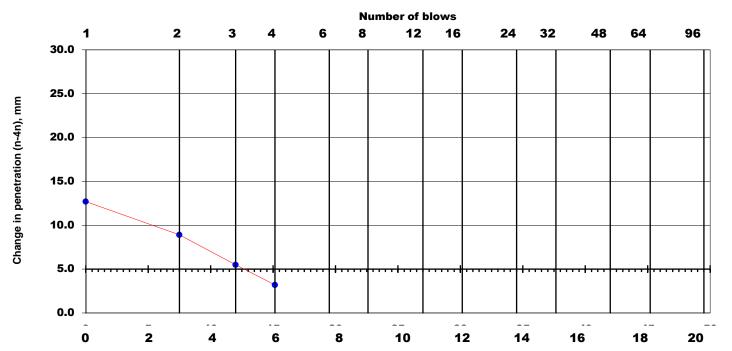
Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1434 g
Moisture content		17.9 %
Dry mass		1216.0 g
Mass retained		
on 20mm sieve	g	11 %

MCV

5.1

Natural


Project Name:		Job ref.	NMTL_3607
ATU Regional Sports Hubb		GII Project ID	12087-07-22
		BH/TP	TP04
Soil description:		Sample no.	В
Brown grey slightly gravelly slightly sandy clayey SILT		Depth	0.50m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
		Date Sampled	N/A

Date Received

03/02/2023

^{*} Delete as appropriate

Delete as appropriate				
Penetration	Change in			
or	penetration			
protrusion	n to 4n			
mm	mm			
48.6	12.7			
41.7	8.9			
38.3	5.5			
35.9	3.2			
33.9				
32.8				
32.8				
32.7				
	Penetration or protrusion mm 48.6 41.7 38.3 35.9 33.9 32.8 32.8			

Moisture condition value (MCV)

NMTL Ltd

192

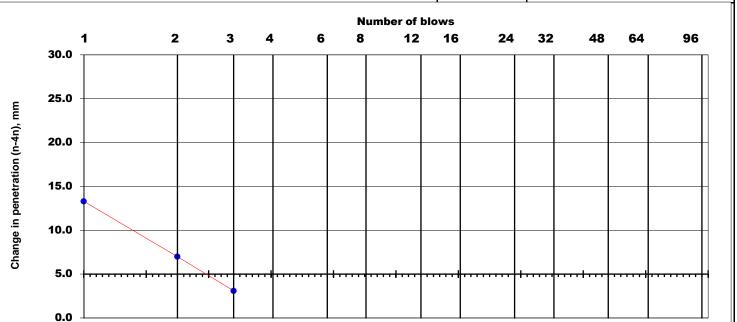
256

Operator	Checked	Approved
Tch	Nc	Вс

Single sample mass		
Initial sample mass		1438 g
Moisture content		18.5 %
Dry mass		1213.8 g
Mass retained		
on 20mm sieve	g	23.3 %

SINGLE POINT MOISTURE CONDITION VALUE TEST

2


0

Project Name: ATU Regional Sports Hubb		Job ref.	NMTL_3607	
		GII Project ID	12087-07-22	
			BH/TP	TP05
Soil description: Brown grey slightly sandy slightly gravelly clayey SILT			B 0.50m	
				Test method
			Date Sampled	N/A
MCV	3.9	Natural	Date Received	03/02/2023

* Delete as appropriate

256

Delete as appropriate				
Total	Penetration	Change in		
number	or	penetration		
of blows	protrusion	n to 4n		
n	mm	mm		
1	48.0	13.3		
2	40.6	7.0		
3	36.6	3.1		
4	34.7			
6	33.7			
8	33.6			
12	33.5			
16				
24				
32				
48				
64				
96				
128				
192				

10

Moisture condition value (MCV)

12

14

16

20

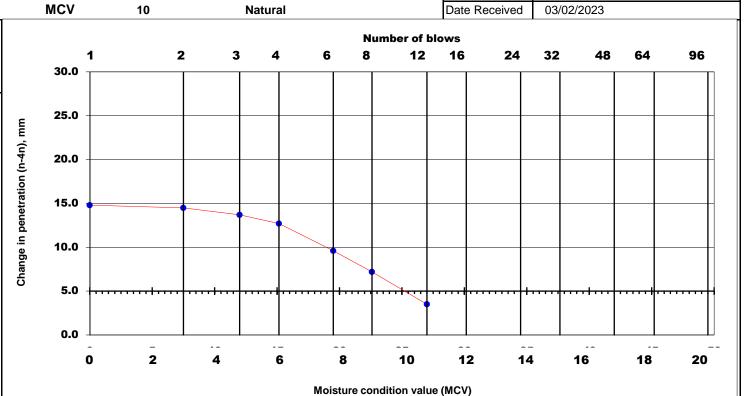
18

Operator Checked Approved **NMTL Ltd** Tch Вс Nc

4

6

8


Single sample mass		
Initial sample mass		1397 g
Moisture content		13.1 %
Dry mass		1235.0 g
Mass retained		
on 20mm sieve	g	41 %

SINGLE POINT MOISTURE CONDITION VALUE TEST

Project Name: ATU Regional Sports Hubb		Job ref.	NMTL_3607
		GII Project ID	12087-07-22
		BH/TP	TP06
Soil description:		Sample no. Depth	B 0.50m
Grey brown silty sandy fine to coarse GRAVEL.			
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
		Date Sampled	N/A

* Delete as appropriate

Total	Penetration	Change in
number	or	penetration
of blows	protrusion	n to 4n
n	mm	mm
1	47.8	14.8
2	41.0	14.5
3	36.2	13.7
4	33.0	12.7
6	29.4	9.6
8	26.5	7.2
12	22.5	3.5
16	20.3	
24	19.8	
32	19.3	
48	19.0	
64		
96		
128		
192		
256		

Operator	Checked	Approved
Tch	Nc	Bc

Single sample mass		
Initial sample mass		1498 g
Moisture content		18.0 %
Dry mass		1269.0 g
Mass retained		
on 20mm sieve	g	20.5 %

Penetration

protrusion

54.5

46.3

41.9

38.7

35.5

33.2

31.7

31.0

30.9

30.8

mm

Change in

penetration

15.8

13.1

10.2

7.7

4.6

2.4

n to 4n

mm

SINGLE POINT MOISTURE	CONDITION VA	LUE TEST
-----------------------	---------------------	----------

Project Name:		Job ref.	NMTL_3607
ATU F	Regional Sports Hubb	GII Project ID	12087-07-22
		BH/TP	TP08
Soil description:		Sample no.	В
Dark grey slightly sar	ndy gravelly clayey SILT.	Depth	0.50m
Test method	BS 1377 : Part 4 : 1990 : 5	Date Tested	22/02/2023
		Date Sampled	N/A

* Delete as appropriate

Total

n

number

of blows

2

3

4

6

8

12 16

24

32

					Num	ber of b						
	1	2 3	4	6	8	12	16	24	32	48	64	96
30.0												
25.0												
20.0												
15.0											_	
10.0											-	
5.0		 					••••					
0.0											<u></u>	
(0 2	4	6	8		10	12	14	4	16	18	20

Operator	Checked	Approved
Tch	Nc	Вс

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Conor Finnerty

Date: 6th February, 2023

Your reference : 12087-07-22

Our reference : Test Report 23/1129 Batch 1

ATU Regional Sports HUB Letterkenny Donegal Location:

Date samples received : 25th January, 2023

Status: Final Report

1 Issue:

Fourteen samples were received for analysis on 25th January, 2023 of which thirteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland Client Name:

12087-07-22 Reference:

ATU Regional Sports HUB Letterkenny Donegal Location:

Conor Finnerty Contact:

Report: Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/1129									
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00
COC No / misc										
Containers	VJT									
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023
Sample Type	Soil									

Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	notes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1				1		1				
				1	1	1		1		1	LOD/LOR	Units	Method No.
Date of Receipt			25/01/2023		25/01/2023					25/01/2023			
Antimony #	2	<1	2	1	1	1	2	<1	1	1	<1	mg/kg	TM30/PM15
Arsenic#	8.4 90	6.2 117	15.2 71	9.7 52	4.9 71	6.2 95	11.9 76	10.4 101	10.9 72	13.6 91	<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Barium#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Cadmium # Chromium #	25.4	36.4	131.6	26.3	64.5	56.4	43.0	27.5	38.9	44.2	<0.1	mg/kg mg/kg	TM30/PM15
Copper#	26	31	38	46	28	30.4	27	29	16	25	<1	mg/kg	TM30/PM15
Lead #	17	15	21	30	17	14	21	17	18	15	<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum#	0.9	1.2	4.0	0.8	1.4	1.2	1.5	0.8	1.7	1.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	24.7	26.8	38.0	58.6	24.5	28.8	29.1	25.8	23.5	24.6	<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	2	<1	<1	1	<1	<1	1	<1	<1	mg/kg	TM30/PM15
Zinc [#]	79	82	63	86	71	84	86	82	59	80	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene * Coronene	<0.04 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8										
PAH 6 Total #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.22	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	113	99	110	127	113	113	131	106	128	101	<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Conor Finnerty

EMT Job No: 23/1129

Contact:

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			
											LOD/LOR	Units	Method No.
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023			
TPH CWG Aliphatics													
>C5-C6 (HS 1D AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10 <10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C25-C35 (EH_1D_AL) Aromatics	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TMS/PM6/PMT6
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS 1D AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene#	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5 .5	<5	<5	<5 .5	<5	<5 .5	<5	<5 .5	<5	<5	ug/kg	TM17/PM8
PCB 153#	<5 <5	<5 <5	ug/kg	TM17/PM8									
PCB 180 [#] Total 7 PCBs [#]	<5 <35	<5 <35	ug/kg ug/kg	TM17/PM8 TM17/PM8									
Total FT ODS	-00	,	100	-55	1 700	-00	_ · · · ·	,	,	,55	1 ,00	agrity	TIVI (1/1 IVIO

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/1129												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023		Onio	No.
Natural Moisture Content	20.9	15.6	25.2	13.8	17.9	17.8	17.6	14.8	20.8	15.5	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	17.3	13.5	20.1	12.1	15.2	15.1	14.9	12.9	17.2	13.5	<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0076	0.0056	0.0140	0.0141	0.0039	0.0417	0.0055	0.0038	0.0055	0.0239	<0.0015	g/l	TM38/PM20
Chromium III	25.4	36.4	131.6	26.3	64.5	56.4	43.0	27.5	38.9	44.2	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.11	0.05	0.85	0.11	0.12	0.09	0.10	0.05	0.11	0.03	<0.02	%	TM21/PM24
#	0.04	0.04	0.00	0.00	0.70	0.05	0.00	7.45	0.70	0.05	.0.04		TM70/DM44
pH #	6.94	6.01	6.08	6.93	6.72	6.95	6.93	7.15	6.72	8.05	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1092	0.106	0.1261	0.1055	0.1069	0.1108	0.1072	0.107	0.1087	0.1046		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT 300 NO:										•			
EMT Sample No.	41	42	43										
Sample ID	TP08	TP09	TP11										
Depth	1.00	0.50	0.50							Please se	e attached n	otes for all	
COC No / misc										Please see attached notes for abbreviations and acronyms			
Containers		т	т										
Sample Date													
Sample Type		Soil	Soil										
Batch Number	1	1	1							LOD/LOR	Units	Method No.	
Date of Receipt	25/01/2023	25/01/2023	25/01/2023										
Antimony #	-	-	-							<1	mg/kg	TM30/PM15	
Arsenic [#] Barium [#]	-	-	-							<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15	
Cadmium#	_	_	_							<0.1	mg/kg	TM30/PM15	
Chromium #	-	-	-							<0.5	mg/kg	TM30/PM15	
Copper#	-	-	-							<1	mg/kg	TM30/PM15	
Lead [#]	-	-	-							<5	mg/kg	TM30/PM15	
Mercury#	-	-	-							<0.1	mg/kg	TM30/PM15	
Molybdenum#	-	-	-							<0.1	mg/kg	TM30/PM15	
Nickel [#]	-	-	-							<0.7	mg/kg	TM30/PM15	
Selenium#	-	-	-							<1	mg/kg	TM30/PM15	
Zinc [#]	-	-	-							<5	mg/kg	TM30/PM15	
PAH MS													
Naphthalene #	-	-	-							<0.04	mg/kg	TM4/PM8	
Acenaphthylene	-	-	-							<0.03	mg/kg	TM4/PM8	
Acenaphthene #	-	-	-							<0.05	mg/kg	TM4/PM8	
Fluorene#	-	-	-							<0.04	mg/kg	TM4/PM8	
Phenanthrene#	-	-	-							<0.03	mg/kg	TM4/PM8	
Anthracene #	-	-	-							<0.04	mg/kg	TM4/PM8	
Fluoranthene #	-	-	-							<0.03	mg/kg	TM4/PM8	
Pyrene# Benzo(a)anthracene#	-	-	-							<0.03 <0.06	mg/kg	TM4/PM8 TM4/PM8	
Chrysene #	-	-	-							<0.00	mg/kg mg/kg	TM4/PM8	
Benzo(bk)fluoranthene #	-	-	-							<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene #	-	-	-							<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene#	-	-	-							<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene#	-	-	-							<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene #	-	-	-							<0.04	mg/kg	TM4/PM8	
Coronene	-	-	-							<0.04	mg/kg	TM4/PM8	
PAH 6 Total #	-	-	-							<0.22	mg/kg	TM4/PM8	
PAH 17 Total Benzo(b)fluoranthene	-	-	-							<0.64 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8	
Benzo(k)fluoranthene	-	-	-							<0.03	mg/kg	TM4/PM8	
Benzo(j)fluoranthene	-	-	-							<1	mg/kg	TM4/PM8	
PAH Surrogate % Recovery	-	-	-							<0	%	TM4/PM8	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	-	-							<30	mg/kg	TM5/PM8/PM16	
	I	I .	<u>I</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	I					

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT Job No:	23/1129							 	 _		
EMT Sample No.	41	42	43						1		
Sample ID	TP08	TP09	TP11								
Depth	1.00	0.50	0.50							e attached n	
COC No / misc									abbrevia	ations and a	cronyms
Containers	Т	Т	Т						1		
Sample Date	19/01/2023	19/01/2023	19/01/2023								
Sample Type											
	Soil	Soil	Soil								
Batch Number	1	1	1						LOD/LOR	Units	Method No.
Date of Receipt	25/01/2023	25/01/2023	25/01/2023								NO.
TPH CWG											
Aliphatics											
>C5-C6 (HS_1D_AL)#	-	-	-						<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	-	-	-						<0.1	mg/kg	TM36/PM12 TM36/PM12
>C8-C10 (HS_1D_AL)	-	-	-						<0.1 <0.2	mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C12 (EH_CU_1D_AL)#	-	-	-						<0.2	mg/kg mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)* >C16-C21 (EH_CU_1D_AL)*	-	-	-						<7	mg/kg mg/kg	TM5/PM8/PM16
>C21-C35 (EH CU 1D AL)#	-	_	_						<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	-	-	_						<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	-	-	-						<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	-	-	-						<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	-	-	-						<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	-	-	-						<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	-	-	-						<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	-	-	-						<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	-	-	-						<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	-	-	-						<7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR) Total aromatics C5-40 (EH+HS_1D_AR)	-	-	-						<7	mg/kg	TM5/PM8/PM16 TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	-	-	-						<26 <52	mg/kg mg/kg	TMS/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	_	_	_						<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	-	_	_						<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH 1D AR)	-	-	-						<10	mg/kg	TM5/PM8/PM16
MTBE#	-	-	-						<5	ug/kg	TM36/PM12
Benzene #	-	-	-						<5	ug/kg	TM36/PM12
Toluene #	-	-	-						<5	ug/kg	TM36/PM12
Ethylbenzene #	-	-	-						<5	ug/kg	TM36/PM12
m/p-Xylene #	-	-	-						<5	ug/kg	TM36/PM12
o-Xylene#	-	-	-						<5	ug/kg	TM36/PM12
PCB 28 #	-	-	-						<5 -5	ug/kg	TM17/PM8
PCB 52#	-	-	-						<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-						<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 118# PCB 138#	-	-	-						<5 <5	ug/kg	TM17/PM8
PCB 138" PCB 153#	-	-	-						<5 <5	ug/kg ug/kg	TM17/PM8
PCB 180 #	-	-	-						<5 <5	ug/kg ug/kg	TM17/PM8
Total 7 PCBs#	-	-	-						<35	ug/kg	TM17/PM8
	1	I	I	I.	1	I.	I.	l		59	1

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT Job No:	23/1129								_				
EMT Sample No.	41	42	43										
Sample ID	TP08	TP09	TP11										
Depth	1.00	0.50	0.50						Please see attached notes for a				
COC No / misc									abbrevi	ations and a	cronyms		
Containers	Т	Т	Т										
Sample Date	19/01/2023	19/01/2023	19/01/2023										
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1						LOD/LOR	Units	Method		
Date of Receipt	25/01/2023	25/01/2023	25/01/2023								No.		
Natural Moisture Content	-	-	-						<0.1	%	PM4/PM0		
Moisture Content (% Wet Weight)	-	-	-						<0.1	%	PM4/PM0		
Hexavalent Chromium#	-	-	-						<0.3	mg/kg	TM38/PM20		
Sulphate as SO4 (2:1 Ext)#	0.0023	0.0042	0.0046						<0.0015	g/l	TM38/PM20		
Chromium III	-	-	-						<0.5	mg/kg	NONE/NONE		
Total Organic Carbon #	-	-	-						<0.02	%	TM21/PM24		
pH#	7.19	7.29	7.80						<0.01	pH units	TM73/PM11		
Mass of raw test portion	-	-	-							kg	NONE/PM17		
Mass of dried test portion	-	-	-							kg	NONE/PM17		
				<u> </u>	<u> </u>	I	I	 					

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report: CEN 10:1 1 Batch

EMT Job No:	23/1129												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	abbreviations and acron	
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023			No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	0.0028	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.008	0.034	0.006	0.018	0.007	0.003	0.006	0.035	0.004	0.016	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.08	0.34	0.06	0.18	0.07	0.03	0.06	0.35	0.04	0.16	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	0.010	0.010	<0.007	<0.007	<0.007	<0.007	0.009	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	0.10	0.10	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	0.002	<0.002	0.003	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	0.02	<0.02	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	0.004	0.009	0.003	0.005	0.003	<0.003	<0.003	0.097	0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	0.04	0.09	0.03	0.05	0.03	<0.03	<0.03	0.97	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Tuonic					-0			.0	-0	.0		mgmg	TWITT ON TWO
Sulphate as SO4 #	<0.5	2.4	2.8	2.3	<0.5	7.5	<0.5	3.1	<0.5	2.6	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	<5	24	28	23	<5	75	<5	31	<5	26	<5	mg/kg	TM38/PM0
Chloride #	0.3	0.8	0.4	0.3	<0.3	<0.3	0.3	1.4	<0.3	0.3	<0.3	mg/l	TM38/PM0
Chloride#	<3	8	4	<3	<3	<3	<3	14	<3	3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	2	4	4	<2	<2	<2	2	4	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	40	40	<20	<20	<20	<20	40	<20	20	<20	mg/kg	TM60/PM0
pH	6.87	7.38	6.07	6.61	6.73	6.66	6.94	7.10	7.14	7.93	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	<35	7.36	<35	<35	<35	<35	<35	7.10	<35	49	<35	mg/l	TM20/PM0
Total Dissolved Solids #	<350	700	<350	<350	<350	<350	<350	710	<350	490	<350	mg/kg	TM20/PM0
Total Dissolved Sullus	-330	, , , ,	-330	-330	-330	-330	-550	, 10	-330	750	-000	mg/kg	1 IVIZ U/F IVIU

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty
EMT Job No: 23/1129

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No. 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 TP01 TP02 Sample ID TP01 TP02 TP03 TP03 TP04 TP04 TP05 TP05 Depth 0.50 2.00 0.50 1.35 0.50 1.80 0.50 1.30 0.50 2.00 COC No / misc

Please see attached notes for all abbreviations and acronyms

COC No / misc														abbievi		-
Containers	VJT															
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023						
Sample Type	Soil															
Batch Number	1	1	1	1	1	1	1	1	1	1						
Date of Receipt		25/01/2023			25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis																
Total Organic Carbon #	0.11	0.05	0.85	0.11	0.12	0.09	0.10	0.05	0.11	0.03	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-		<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-		<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic#	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.08	0.34	0.06	0.18	0.07	0.03	0.06	0.35	0.04	0.16	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	0.10	0.10	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	0.02	<0.02	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	0.04	0.09	0.03	0.05	0.03	<0.03	<0.03	0.97	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	<350	700	<350	<350	<350	<350	<350	710	<350	490	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	40	40	<20	<20	<20	<20	40	<20	20	500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio	82.1	84.7	71.3	85.1	83.9	80.9	83.7	83.9	82.6	85.7	-	-	-	<0.1	%	NONE/PM4
Moisture Content 105C (% Dry Weight)	21.9	18.1	40.2	17.5	19.2	23.6	19.5	19.3	21.0	16.7		_	_	<0.1	%	PM4/PM0
musture content 100C (% biy Weight)	21.9	10.1	40.2	17.5	19.2	23.0	19.5	19.5	21.0	10.7	-	-	-	40.1	70	FIVI-4/FIVIO
pH#	6.94	6.01	6.08	6.93	6.72	6.95	6.93	7.15	6.72	8.05	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	<5	24	28	23	<5	75	<5	31	<5	26	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	8	4	<3	<3	<3	<3	14	<3	3	800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/1129	1	TP01	0.50	1-4	No Interpretation Possible
23/1129	1	TP01	2.00	5-8	No Interpretation Possible
23/1129	1	TP02	0.50	9-12	No Interpretation Possible
23/1129	1	TP02	1.35	13-16	No Interpretation Possible
23/1129	1	TP03	0.50	17-20	No Interpretation Possible
23/1129	1	TP03	1.80	21-24	No Interpretation Possible
23/1129	1	TP04	0.50	25-28	No Interpretation Possible
23/1129	1	TP04	1.30	29-32	No Interpretation Possible
23/1129	1	TP05	0.50	33-36	No Interpretation Possible
23/1129	1	TP05	2.00	37-40	No Interpretation Possible

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/1129	1	TP01	0.50	4	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP01	2.00	8	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP02	0.50	12	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP02	1.35	16	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP03	0.50	20	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP03	1.80	24	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP04	0.50	28	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP04	1.30	32	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

Contac				illorty				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/1129	1	TP05	0.50	36	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
23/1129	'	11-03	0.50	30		06/02/2023		
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023		NAD
					Widthew Turner	00/02/2023	Asbestos Type	IVAD
23/1129	1	TP05	2.00	40	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023		NAD
					Matthew Turner	06/02/2023		NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
				No deviating sample report results for job 23/1129	
	Batch	Batch Sample ID	Batch Sample ID Depth	Batch Sample ID Depth Sample No.	Batch Sample ID Depth Sample Analysis No.

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/1129

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/1129

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/1129

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

EMT Job No: 23/1129

Test Method No.	Description	Prep Method No. (if appropriate)	Description (L		MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev. 2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev. 2, Dec. 1996; Modified EPA Method 3050B, Rev. 2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
ТМ38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No: 23/1129

Test Method No.	. Description		Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007		No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

APPENDIX 8 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

ATU Letterkenny

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
RC01	09/02/2023	14.00	0.90	
BH03	09/02/2023	14.00	1.50	
BH04	09/02/2023	14.00	1.20	
BH06	09/02/2023	14.00	0.30	
BH15	09/02/2023	14.00	0.70	

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

ATU Letterkenny

Tobins

Waste Classification Report

March 2023

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	ATU Letterkenny
Engineer	Tobins
Project No	12087-07-22
Document Title	Waste Classification Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	B Sexton	C Finnerty	B Sexton	Dublin	14 March 2023

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	1
2.0	Purpose & Scope	1
3.0	Limitations	2
4.0	Site Location and Layout	2
5.0	Site History	2
6.0	Subsurface Exploration	3
6.1.	General	3
6.2.	Trial Pits	3
6.3.	Surveying	3
7.0	Ground Conditions	3
7.1.	General	3
8.0	Laboratory Analysis	5
8.1.	Analysis Suite	5
8.2.	Asbestos	5
9.0	Waste Classification	5
10.0	Conclusions & Recommendations	3
10.1.	Conclusions	3
10.1.1	. Waste Classification	3
10.1.2	. Asbestos	Э
10.1.3	. Waste Categories	Э
10.2.	Recommendations	9
10.2.1	. Waste Transfer	Э
11.0	References)

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

LIST OF TABLES

Table 1 Potential Waste Categories for Disposal/Recovery	7
Table 2 Individual Sample Waste Category	8

APPENDICES

Appendix 1 **Figures**

Trial Pit Records Appendix 2

Appendix 3 **Laboratory Testing**

HazWasteOnLine[™] Report Appendix 4

Appendix 5 **WAC Data Summary**

1.0 Preamble

Ground Investigations Ireland (GII) was appointed by Tobins Consulting Engineers on behalf of Atlantic Technological University (Donegal) to carry out a Waste Classification Assessment for a proposed development in Letterkenny, Co. Donegal. All site investigation works were carried out under the supervision of a GII Geo-Environmental Engineer. The site investigation works undertaken to facilitate the waste classification were completed in November 2022.

2.0 Purpose & Scope

It is understood that as part of the proposed development there may be an excavation to accommodate foundations, services, pavements and carparking and as such the material which may be excavated and removed from site needs to be assessed in terms of waste disposal outlets. The waste classification was carried out in parallel with a wider geotechnical site investigation.

The purpose of the waste classification exercise was as follows.

- · Assess the site in terms of historical use; and
- Classification, in terms of waste management and final disposal outlets, of material that may require disposal following excavation during the construction phase.

The scope of the work undertaken to facilitate the waste classification exercise included the following:

- Site walkover;
- Historical desk study;
- Excavation of eleven (11 No.) trial pits;
- · Collection of subsoil samples for chemical analysis;
- Environmental laboratory testing; and
- Waste classification.

The additional scope of the geotechnical investigation included the following:

- Carry out 7 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out. CBR testing to determine pavement design parameters
- Carry out 10 No. Percussion Boreholes to recover soil samples.
- Carry out 10 No. Rotary Core Boreholes to a maximum depth of 16.00m BGL
- Installation of 5 No. Groundwater monitoring wells; and
- Geotechnical Laboratory testing.

The geotechnical site investigation is discussed in the GII Ground Investigation Report Dated March 2023.1

¹ Ground Investigations Ireland, ATU Letterkenny, Ground Investigation Report, March 2023.

3.0 Limitations

GII has prepared this report for the sole use of Atlantic Technological University (Donegal). No other warranty, express or implied, is made as to the professional advice included in this report or other services provided by GII.

The conclusions and recommendations contained in this report are based upon information provided by others and the assumption that all relevant information has been provided by those bodies from whom it has been requested. Information obtained from third parties has not been independently verified by GII, unless otherwise stated in this report.

This report has been prepared in line with best industry standards and within the project's budgetary and time constraints. The methodology adopted and the sources of information used by GII in providing its services are outlined in this report.

The site investigation works undertaken to facilitate the waste classification were completed in November 2022. This report is based on the conditions encountered and the information available during that period. The scope of this Report and the services are accordingly factually limited by these circumstances.

Site investigation locations were selected by the consultant engineer.

GII disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to GII's attention after the date of the Report.

The conclusions presented in this report represent GII's best professional judgement based on review of site conditions observed during any site visit and the relevant information available at the time of writing. The opinions and conclusions presented are valid only to the extent that the information provided was accurate and complete.

The investigation was focused on a broad assessment of the subsoil quality across the site. The assessment did not extend to the identification of asbestos containing materials associated with any on-site structures, ground gases or groundwater.

The waste classification exercise is reflective of and applicable to the ground conditions on site at the time of the site investigation and sampling. Alterations to the ground conditions or any further excavations carried out on site following the investigation are not reflected in this report.

4.0 Site Location and Layout

The site is located in the north eastern portion of Letterkenny Town, County Donegal (Figure 1 Appendix 1). At the time of the assessment the site was comprised of farmland. The surrounding land use was a mix of agricultural and residential.

5.0 Site History

GII reviewed the aerial photographs and historical maps maintained by the Ordnance Survey of Ireland (OSI) and the google imagery records. These included the 6-inch maps that were produced between 1829

and 1842, the 25-inch maps that were produced between 1888 and 1913 and the 6-inch Cassini Maps that were produced between the 1830's and 1930's. The site is undeveloped on the 6-Inch map with the exception of the presence of a Mill Pond in the northern section of the site. The pond is associated with a Flour Mill located to the south of the site on the 6-Inch map. The Mill Pond is not present on the 25-Inch or Cassini maps. It is assumed that the pond was backfilled.

Based on a review of the OSI and Google Imagery aerial photograph records the site has been in its current state of development since at least 1995.

6.0 Subsurface Exploration

6.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

6.2. Trial Pits

The trial pits were excavated using an 8T tracked excavator at the locations shown in Figure 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

6.3. Surveying

The exploratory hole locations have been recorded using a KQGeo M8 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

7.0 Ground Conditions

7.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report. For full geotechnical

descriptions of the ground conditions refer to the geotechnical site investigation report referced in Section 2.0.

The sequence of strata encountered was consistent across the site and generally comprised;

- Topsoil
- Cohesive Deposits
- Granular Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.30m BGL.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *reddish brown sandy gravelly CLAY/SILT with occasional cobbles and boulders* overlying a *blueish grey sandy gravelly CLAY/SILT with occasional cobbles and boulders*. In BH04, BH13 & TP09 a bluish grey sandy SILT was also encountered. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits was generally soft at shallow depths however typically increased with depth and was firm to stiff or stiff below 2.00m to 3.00m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs.

GRANULAR DEPOSITS: Granular deposits were encountered within the cohesive deposits and were typically described as grey brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL with occasional cobbles and rare boulders. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs. It should be noted that many of the trial pits where granular deposits or groundwater were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

WEATHERED BEDROCK: In the majority of exploratory holes weathered rock was encountered which was only diggable with the excavator to a depth of less than to 0.10m below the top of the stratum. The trial pits were terminated upon encountering the more competent bedrock, in which further excavation became more difficult. This material was recovered typically as angular gravel and cobbles of shist however there was some variability in the fracture spacing and the ease at which the excavator could progress.

8.0 Laboratory Analysis

8.1. Analysis Suite

In order to assess materials, which may be excavated and removed from site, in terms of waste classification, a selection of samples collected were analysed for a suite of parameters which allows for the assessment of the soils in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous* (RILTA Suite). The suite also allows for the assessment of the soils in terms of suitability for placement at various categories of landfill. The parameter list for the RILTA suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The RILTA suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are pH, total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

In line with the requirement of Council Decision 2003/33/EC a leachate was generated from the solid samples which was in turn analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

The laboratory testing was completed by Element Materials Technology (EMT) in the UK; EMT is a UKAS accredited laboratory. The full laboratory report is included in Appendix 3.

8.2. Asbestos

Asbestos fibres were not detected in the samples. The laboratory did not identify asbestos containing materials (ACMs) in the samples.

9.0 Waste Classification

GII understands that any materials which may be excavated and removed from site would meet the definition of waste under the Waste Framework Directive. Due to the varying levels of anthropogenic materials encountered in the made ground there are potentially two sets of List of Waste (LoW)² codes with "mirror" entries which may be applied to excavated materials to be removed from site.

1. 17-05-03* (soil and stone containing dangerous substances, classified as hazardous) or 17-05-04 (soil and stone other than those mentioned in 17-05-03, not hazardous); or

² Formerly European Waste Catalogue Codes (EWC Codes)

2. 17-09-03* (other construction and demolition wastes (including mixed wastes) containing hazardous substances) or 17-09-04 (mixed construction and demolition wastes other than those mentioned in 17 09 01, 17 09 02 and 17 09 03).

Where waste is a mirror entry in the LoW, it can be classified via a process of analysis against standard criteria set out in the Waste Framework Directive. The assessment process is described in detail in guidance published by the Irish (EPA Waste Classification, List of Waste & Determining if Waste is Hazardous or Non-Hazardous, June 2015) and UK regulatory authorities (Guidance on the Classification and Assessment of Waste: Technical Guidance WM3, 2015). The assessment involves comparison of the concentration of various parameters against defined threshold values.

The specific LoW code which should be applied to the material at each sample location is summarised in Table 2 below. These codes are only applicable where the material is being removed from a site as a waste.

GII use HazWasteOnlineTM, a web-based commercial waste classification software tool which assists in the classification of potentially hazardous materials. This tool was used to determine whether the materials sampled are classified as hazardous or non-hazardous. The use of the online tool is accepted by the EPA (EPA 2014).

The conclusions presented in the report are based on GII's professional opinion. It should be noted that the environmental regulator (in this case the EPA) and the waste acceptor (in this case a landfill operator) shall decide whether a waste is hazardous or non-hazardous and suitable for disposal at their facility.

9.1. HazWasteOnLineTM Results

In total, ten (10 No.) samples were assessed using the HazWasteOnLine[™] Tool. All samples were classified as being non-hazardous. The complete HazWasteOnLine[™] report for all samples is included in Appendix 4. The specific LoW code which should be applied to the material at each SI location is summarised in Table 2 below. The assigning of the LoW code is based on observations recorded in the trial pits, an estimation of the % of anthropogenic material present and the results of the HazWasteOnline[™] output. The final LoW codes applied at the time of disposal may vary due to variations in % of anthropogenic material observed in the excavation phase. Where there is in excess of 2%³ anthropogenic material observed the LoW code 17 09 04 may be applied.

9.2. Landfill Waste Acceptance Criteria

Waste Acceptance Criteria (WAC) have been agreed by the EU (Council Decision 2003/33/EC) and are only applicable to material if it is to be disposed of as a waste at a landfill facility. Each individual member state and licensed operators of landfills may apply more stringent WAC. WAC limits and the associated laboratory analysis are not suitable for use in the determination of whether a waste is hazardous or non-

³ EPA (2020) - Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities.

hazardous. The data have been compared to the WAC limits set out in Council Decision 2003/33/EC as well as the specific WAC which the EPA have applied to the Walshestown and Integrated Materials Solutions (IMS) Landfills. The Walshestown and IMS landfills have higher limits for a range of parameters while still operating under an inert landfill licence. The WAC data considered in combination with the waste classification outlined in Section 9.0 allows the most suitable waste category to be applied to the material tested. The potentially applicable waste categories are summarised in Table 1. A summary of the WAC data is presented in Appendix 5. The waste category assigned to each sample is summarised in Table 2.

Table 1 Potential Waste Categories for Disposal/Recovery

Waste Category	Classification Criteria
Category A	Soil and Stone only which are free from ⁴ anthropogenic materials such
Unlined Soil Recovery	as concrete, brick, timber. Soil must be free from "contamination" e.g.
Facilities	PAHs, Hydrocarbons ⁵ .
Category B1	Reported concentrations within inert waste limits, which are set out by
Inert Landfill	the adopted EU Council Decision 2003/33/EC establishing criteria and
	procedures for the acceptance of waste at landfills pursuant to Article
	16 and Annex II of Directive 1999/31/EC (2002).
	Results also found to be non-hazardous using the HWOL ⁶ application.
Category B2	Reported concentrations greater than Category B1 criteria but less
Inert Landfill	than IMS Hollywood Landfill acceptance criteria, as set out in their
	Waste Licence W0129-02.
	Results also found to be non-hazardous using the HWOL application.
Category C	Reported concentrations greater than Category B2 criteria but within
Non-Haz Landfill	non-haz landfill waste acceptance limits set out by the adopted EU
	Council Decision 2003/33/EC establishing criteria and procedures for
	the acceptance of waste at landfills pursuant to Article 16 and Annex II
	of Directive 1999/31/EC (2002).
	Results also found to be non-hazardous using the HWOL application.
Category C 1	As Category C but containing < 0.001% w/w asbestos fibres.
Non-Haz Landfill	
Category C 2	As Category C but containing >0.001% and <0.01% w/w asbestos
Non-Haz Landfill	fibres
Category C 3	As Category C but containing >0.01% and <0.1% w/w asbestos fibres.
Non-Haz Landfill	
Category D	Results found to be hazardous using HWOL Application.
Hazardous Treatment	

⁶ HazWasteOnLine™ Tool.

⁴ Free from equates to less than 2%.

⁵ Total BTEX 0.05mg/kg, Mineral Oil 50mg/kg, Total PAHs 1mg/kg, Total PCBs 0.05mg/kg and Asbestos No Asbestos Detected – EPA Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities, 2020.

Waste Category	Classification Criteria							
Category D 1	Results found to be hazardous due to the presence of asbestos							
Hazardous Disposal	(>0.1%).							

9.3. Final Waste Categorisation

All samples were assessed in terms of waste classification using the HazWasteOnLine[™] tool and also the WAC set out in Council Decision 2003/33/EC and the Walshestown/IMS specific WAC to give a final waste categorisation to determine the most appropriate disposal route for any waste generated. The final and most applicable waste category for each sample is summarised in Table 2.

Table 2 Individual Sample Waste Category

Sample ID	Sample Depth (m)	Material Type	Sample Date	LoW Code	Waste Category
TP01	0.50	Clay	19/01/2023	17 05 04	Category A
TP01	2.00	Clay	19/01/2023	17 05 04	Category A
TP02	0.50	Clay	19/01/2023	17 05 04	Category A
TP02	1.35	Clay	19/01/2023	17 05 04	Category A
TP03	0.50	Clay	19/01/2023	17 05 04	Category A
TP03	1.80	Clay	19/01/2023	17 05 04	Category A
TP04	0.50	Clay	19/01/2023	17 05 04	Category A
TP04	1.30	Clay	19/01/2023	17 05 04	Category A
TP05	0.50	Clay	19/01/2023	17 05 04	Category A
TP05	2.00	Clay	19/01/2023	17 05 04	Category A

10.0 Conclusions & Recommendations

The conclusions and recommendations given and opinions expressed in this report are based on the findings of the site investigation works and laboratory testing undertaken. Where any opinion is expressed on the classification of material between site investigation locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the findings at the site investigation locations.

10.1. Conclusions

10.1.1. Waste Classification

Based on the results of the HazWasteOnLine[™] tool the material sampled across the site if being considered a waste can be classified as non-hazardous.

10.1.2. Asbestos

Asbestos was not detected in the soil samples.

10.1.3. Waste Categories

The most applicable waste categories for each of the samples if being considered a waste have been presented in Table 2.

10.2. Recommendations

10.2.1. Waste Transfer

In the event that material is excavated for removal from site, any firm engaged to transport waste material from site and the operator of any waste facility that will accept subsoils excavated from this site should be furnished with, at a minimum, copies of the **full unabridged** laboratory reports and HazWasteOnLineTM report for all samples presented in this report.

The material on site if excavated should be removed to the most appropriate facility under the waste categories and LoW codes identified in Table 2.

The non-hazardous material across the site if excavated should be removed from site to an appropriate facility under either the LoW codes 17 05 04 or 17 09 04. Where during excavation there is noted to be in excess of 2% anthropogenic material the appropriate LoW code which should be applied is 17 09 04.

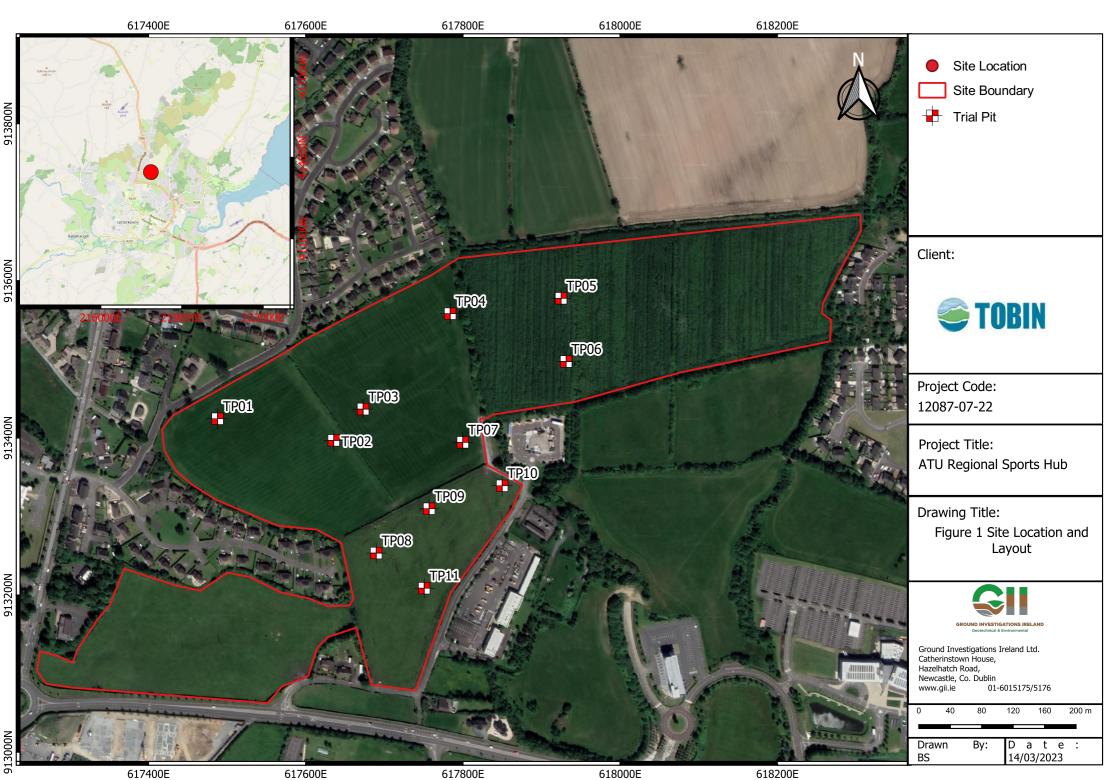
11.0 References

Environment Agency (2013). Waste Sampling and Testing for Disposal to Landfill.

Environment Agency (2015). *Technical Guidance WM3 - Guidance on the classification and assessment of waste (1st edition 2015) Technical Guidance WM3.*

Environmental Protection Agency (EPA) (2014). Letter to Licences *Re: Waste Classification & Haz Waste On-Line*TM.

Environmental Protection Agency (EPA) (2015). Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous.


Environmental Protection Agency (EPA) (2020). Guidance on Waste Acceptance Criteria at Authorised Soil Recovery Facilities.

Environmental Protection Agency (EPA) (June 2019). Guidance on Soil and Stone By-products in the context of article 27 of the European Communities (Waste Directive) Regulations 2011 Version 3.

Association of Geotechnical and Geoenvironmental Specialists (2019). *Waste Classification for Soils – A Practitioners Guide.*

APPENDIX 1 - Figures

APPENDIX 2 – Trial Pit Records

	Grou	nd Inv	estigations I www.gii.ie	reland	Ltd	Site ATU Regional Sports HUB	ı	Trial Pit Number TP01
Machine: 5		1m x 2.5m		Ground Level (mOD 98.52		Client		Job Number 12087-07-22
		Location 61748	87.7 E 913423.1 N	Dates 30	/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend sp
				98.22	(0.30) - (0.30) - 0.30	Light brown slightly sandy grass rootlets Firm light brown slightly gr	slightly gravelly TOPSOIL w	rith
0.50	В			97.52	(0.70)	Firm reddish brown sandv	gravelly CLAY with occasio	nal
1.10 1.30	В				(0.40)	cobbles	3	
1.50	Б			97.12	(0.30)	Firm light brown slightly sa	andy gravelly CLAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00	В			96.82	1.70	Firm bluish grey slightly sa occasional cobbles	andy gravelly CLAY with	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				96.12		Complete at 2.40m		
Plan .					•	Remarks No groundwater encountere	d.	
						Trial pit unstable. Trial pit backfilled when com	pplete.	
					•			
					5	Scale (approx)	Logged By	Figure No. 12087-07-22.TP01

	Grou	nd Inve	estigations I www.gii.ie	ATIL Degional Charte LILID			l Pit nber 202		
Machine: 5	t tracked	Dimensior 1m x 2.5m	ns	Ground	Level (mOD) 85.06	Client			n ber '-07-22
		Location 61763	35.6 E 913395.6 N	Dates 30	/11/2022	Engineer Tobin		She-	et 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lege	Mater Dn
Depth (m) 0.50 1.00 Plan	B B		Field Records	84.76 84.16 83.71	- (0.30) - (0.60) - (0.40) - (0.40) - (1.35) - (- (- (- (- (- (- (- (- (- (- (- (- (-	Brown slightly sandy slight rootlets Firm reddish brown slightly	tly gravelly TOPSOIL with gravelly sandy gravelly CLAY	77.877	A Control of the cont
					. s	Scale (approx)	Logged By	Figure No. 12087-07-22	TP02

	Grou	nd Inv	estigations www.gii.ie	Site ATU Regional Sports HUB				
Machine: 5 Method: T	t tracked	Dimension 1m x 2.5n	ns	Ground	Level (mOD) 85.31	Client		Job Number 12087-07-22
		Location 6176	72.9 E 913435.4 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
0.50 1.00 Plan	B B	· .		85.01 84.81 83.71	. (0.30) - (0.30) - (0.20) - (0.50) - (1.10) - (1.10) - (0.40) - (Light brown slightly sandy grass rootlets Firm light brown slightly groccasional cobbles	slightly gravelly TOPSOIL was avelly sandy CLAY with gravelly CLAY with occasion of the same of the sa	ith
				•				
		•		•		Scale (approx) 1:25	Logged By SML	Figure No. 12087-07-22.TP02

	Grou	nd Inv	estigations li www.gii.ie	Site ATU Regional Sports HUB	Trial Pit Number TP04			
Machine: 5		Dimension 1m x 2.5	ons		Level (mOD) 86.45	Client		Job Number 12087-07-22
		Location 617	783.7 E 913556.9 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Do	escription	Legend Nater
				86.15	0.30	rootlets	ly gravelly TOPSOIL with gravelly CLAY with occasion	
0.50	В							
1.30	В			85.25	- 1.20 	Firm bluish grey slightly sa occasional cobbles	indy gravelly CLAY with	
				84.05 84.05	2.40	Rock - Schist Complete at 2.40m		· · · · · · · · · · · · · · · · · · ·
Plan .		٠			•	Remarks No groundwater encountere	d.	
						Trial pit unstable. Trial pit backfilled when com	plete.	
						Scale (approx)	Logged By SML	Figure No. 12087-07-22.TP04

	Ground Investigations Ireland Ltd www.gii.ie					Site ATU Regional Sports HUB		Trial Pit Number TP05
Machine: 5 Method: T		Dimension 1m x 2.5r	ns		Level (mOD) 85.47	Client		Job Number 12087-07-22
		Location 6179	24.8 E 913576.5 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater Water
0.50 1.60 2.00	В			83.97 83.47 83.27	- (1.20) - (1.50) - (0.50) - (0.20) - (2.20) - (2.20) - (1.20)	Firm reddish brown sandy Firm bluish grey slightly groccasional cobbles		
						No groundwater encounterer Trial pit unstable. Trial pit backfilled when com	ed. nplete.	
		_						
		•		- '				
		_						
·	•	-	· ·		. 5	Scale (approx) 1:25	Logged By SML	Figure No. 12087-07-22.TP05
					1			1

	Grou	nd Inv	estigations I www.gii.ie	Site ATU Regional Sports HUB Ti				
Machine: 5		Dimension 1m x 2.5m	ns		Level (mOD) 80.59	Client		Job Number 12087-07-22
		Location 6179	31.1 E 913495.9 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend sp
0.50 1.20	В			79.69 79.49 78.79 78.74	- (0.52) - 0.90 - (0.20) - 1.10 - (0.70) - 1.80 - 1.85	Loose grey slightly clayey cobbles Firm black organic CLAY v	gravelly CLAY with many co	onal
						Groundwater encountered. Trial pit stable. Trial pit backfilled when com	nplete.	
		-						
						Scale (approx)	Logged By	Figure No. 12087-07-22.TP06

	Grou	nd Inv	estigations l www.gii.ie	Site ATU Regional Sports HUB	Trial Pit Number TP07			
Machine: 5	t tracked	Dimensio 1m x 2.5r	ns	Ground	Level (mOD) 78.15	Client		Job Number 12087-07-22
		Location 6177	99.7 E 913393.2 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Water
1.00 Plan .				76.85	1.30	Complete at 1.30m	sandy GRAVEL (weathered	
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	a. plete.	
						Scale (approx)	Logged By	Figure No. 12087-07-22.TP07

	Grou	nd Inve	estigations I www.gii.ie	Site ATU Regional Sports HUB	Trial Pit Number TP08			
Machine: 5	t tracked	Dimensior 1m x 2.5m	ıs	Ground	Level (mOD) 77.89	Client		Job Number 12087-07-22
		Location 61768	39.6 E 913252.1 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate
				77.54	(0.35) - - - - 0.35	Brown slightly sandy slight rootlets Firm light brown slightly gr	tly gravelly TOPSOIL with gr	ass
0.50	В			77.24	(0.30) - - - - - - - - - - -	Firm bluish grey slightly sa	andy gravelly CLAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.00	В			76.49	(0.75)	Loose grey blue slightly sa	andy alayer CDAVE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.80	В			76.19	(0.30) - 1.70	Firm light brown slightly sa		
2.50	В			75.29	2.60	Complete at 2.60m		
Plan .						Remarks No groundwater encountere	d	
						Trial pit backfilled when com	pplete.	
						Scale (approx)	Logged By	Figure No. 12087-07-22.TP08

Ground Investigations Ireland Ltd www.gii.ie						Site ATU Regional Sports HUB	Trial Pit Number TP09	
Machine: 5	t tracked	Dimension 1m x 2.5m	ıs	Ground	Level (mOD) 77.45	Client		Job Number 12087-07-22
		Location 61775	56.9 E 913308.6 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
0.50	В			77.25	(0.20) - (0.20) - (0.20) - (0.85)	Brown slightly sandy slight rootlets Soft to firm bluish grey sar	tly gravelly TOPSOIL with gra	ass ***
1.20	В			76.40 76.15	(0.25)	Soft to firm reddish brown Soft bluish grey slightly sa cobbles and boulders	sandy gravelly CLAY	
1.50	В			75.55	(0.60)	cossics and sources		
Plan						Complete at 2.60m		
						No groundwater encountere Trial pit stable. Trial pit backfilled when com	d.	
		•				Trial pit dackfilled when com	рієїє.	
		•						
						Scale (approx)		Figure No. 12087-07-22.TP09

Ground Investigations Ireland Ltd www.gii.ie							Nur			Trial Pi Numbe	er	
Machine :	5t tracked Trial Pit		Dimension 1 m x 2.5	ons	,		Level (mOD) 77.11	Client			Job Numbe	
			Location 617	າ '849.8 E 9133	37.8 N	Dates 30)/11/2022	Engineer Tobin			Sheet 1/1	
Depth (m)	Samp	ole / Tests	Water Depth (m)	Field F	Records	Level (mOD)	Depth (m) (Thickness)	Do	escription	L	Legend	Water
Plan						76.91 76.81 76.76	- (0.130) - 0.35	Brown slightly sandy slightly rootlets Firm reddish brown slightly Weathered rock - schist Complete at 0.35m	y sandy gravelly CLAY	- //		
								No groundwater encountere Trial pit unstable. Trial pit backfilled when com	d. plete.			
			ē									
								Scale (approx)	Logged By SML	Figure I		 P10

	Grou	nd Inv	estigations I www.gii.ie	Site ATU Regional Sports HUB TP				
Machine : Method :	5t tracked	Dimension 1m x 2.5	ons	Ground	Level (mOD) 76.19	Client		Job Number 12087-07-22
		Location 6177	750.6 E 913207.4 N	Dates 30)/11/2022	Engineer Tobin		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Vater V
0.50 1.50 2.00	В			74.19 73.79		Firm brown grey slightly sa occasional cobbles	andy gravelly CLAY with	
						No groundwater encountere Trial pit unstable. Trial pit backfilled when com	d. plete.	
		•						
		-			<u> </u>	Scale (approx)		Figure No. 12087-07-22.TP11

TP01

ATU Regional Sports HUB – Trial Pit Photos

TP02

ATU Regional Sports HUB – Trial Pit Photos

TP03

ATU Regional Sports HUB – Trial Pit Photos

TP04

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP05

TP06

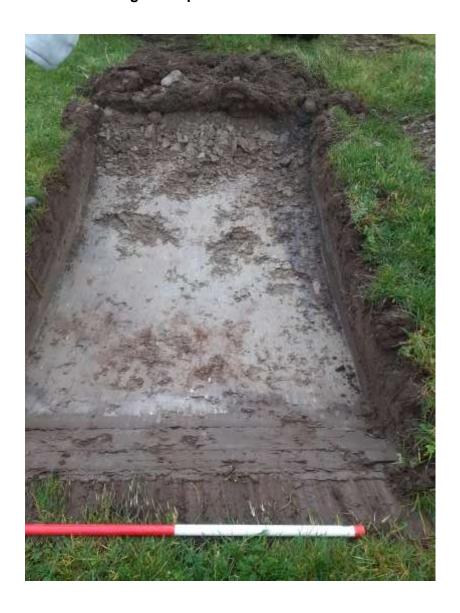
ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP07

ATU Regional Sports HUB – Trial Pit Photos





TP08

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP09

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

TP10

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

ATU Regional Sports HUB – Trial Pit Photos

APPENDIX 3 – Laboratory Testing

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Conor Finnerty

Date: 6th February, 2023

Your reference : 12087-07-22

Our reference : Test Report 23/1129 Batch 1

Location : ATU Regional Sports HUB Letterkenny Donegal

Date samples received: 25th January, 2023

Status: Final Report

Issue: 1

Fourteen samples were received for analysis on 25th January, 2023 of which thirteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland Client Name:

12087-07-22 Reference:

ATU Regional Sports HUB Letterkenny Donegal Location:

Conor Finnerty Contact:

Report : Solid

EMT Job No:	23/1129									
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00
COC No / misc										
Containers	VJT									
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023
Sample Type	Soil									

Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1				1		1				
				1	1	1		1		1	LOD/LOR	Units	Method No.
Date of Receipt				25/01/2023	25/01/2023					25/01/2023			
Antimony #	2	<1	2	1	1	1	2	<1	1	1	<1	mg/kg	TM30/PM15
Arsenic#	8.4 90	6.2 117	15.2 71	9.7 52	4.9 71	6.2 95	11.9 76	10.4 101	10.9 72	13.6 91	<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Barium # Cadmium #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg mg/kg	TM30/PM15
Chromium #	25.4	36.4	131.6	26.3	64.5	56.4	43.0	27.5	38.9	44.2	<0.1	mg/kg	TM30/PM15
Copper#	26	31	38	46	28	30.4	27	29	16	25	<1	mg/kg	TM30/PM15
Lead #	17	15	21	30	17	14	21	17	18	15	<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum#	0.9	1.2	4.0	0.8	1.4	1.2	1.5	0.8	1.7	1.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	24.7	26.8	38.0	58.6	24.5	28.8	29.1	25.8	23.5	24.6	<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	2	<1	<1	1	<1	<1	1	<1	<1	mg/kg	TM30/PM15
Zinc [#]	79	82	63	86	71	84	86	82	59	80	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene * Coronene	<0.04 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8										
PAH 6 Total #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.22	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	113	99	110	127	113	113	131	106	128	101	<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty
EMT Job No: 23/1129

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	23/1129												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00		e attached n	
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	1		
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023		Offics	No.
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Benzene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Toluene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 DCPo#	<35	<35	<35	<35	<35	<35	<35	-35	<35	-35	<35	ua/ka	TM17/DMQ

<35

<35

<35

<35

<35

<35

ug/kg

Total 7 PCBs#

<35

<35

<35

<35

<35

TM17/PM8

Ground Investigations Ireland Client Name:

12087-07-22 Reference:

ATU Regional Sports HUB Letterkenny Donegal Location:

Contact: Conor Finnerty Report : Solid

EMT Job No:	23/1129									
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00
COC No / misc										
Containers	VJT									
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023
Sample Type	Soil									
Batch Number	1	1	1	1	1	1	1	1	1	1
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023
Natural Moisture Content	20.9	15.6	25.2	13.8	17.9	17.8	17.6	14.8	20.8	15.5

Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Mathead
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	LOD/LOR	Units	Method No.
Natural Moisture Content	20.9	15.6	25.2	13.8	17.9	17.8	17.6	14.8	20.8	15.5	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	17.3	13.5	20.1	12.1	15.2	15.1	14.9	12.9	17.2	13.5	<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0076	0.0056	0.0140	0.0141	0.0039	0.0417	0.0055	0.0038	0.0055	0.0239	<0.0015	g/l	TM38/PM20
Chromium III	25.4	36.4	131.6	26.3	64.5	56.4	43.0	27.5	38.9	44.2	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.11	0.05	0.85	0.11	0.12	0.09	0.10	0.05	0.11	0.03	<0.02	%	TM21/PM24
rotal Organic Carbon	V.11	0.03	0.03	0.11	0.12	0.09	0.10	0.03	0.11	0.03	-0.02	70	TIVIZ I/FIVIZ4
pH #	6.94	6.01	6.08	6.93	6.72	6.95	6.93	7.15	6.72	8.05	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1092	0.106	0.1261	0.1055	0.1069	0.1108	0.1072	0.107	0.1087	0.1046		kg	NONE/PM17
Mass of dried test portion	0.1092	0.09	0.09	0.1033	0.1009	0.09	0.1072	0.09	0.1087	0.1040		kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT 300 NO:										•		
EMT Sample No.	41	42	43									
Sample ID	TP08	TP09	TP11									
Depth	1.00	0.50	0.50							Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers		т	т									
Sample Date												
Sample Type		Soil	Soil									
Batch Number	1	1	1							LOD/LOR	Units	Method No.
Date of Receipt	25/01/2023	25/01/2023	25/01/2023									
Antimony #	-	-	-							<1	mg/kg	TM30/PM15
Arsenic [#] Barium [#]	-	-	-							<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Cadmium#	_	_	_							<0.1	mg/kg	TM30/PM15
Chromium #	-	-	-							<0.5	mg/kg	TM30/PM15
Copper#	-	-	-							<1	mg/kg	TM30/PM15
Lead [#]	-	-	-							<5	mg/kg	TM30/PM15
Mercury#	-	-	-							<0.1	mg/kg	TM30/PM15
Molybdenum#	-	-	-							<0.1	mg/kg	TM30/PM15
Nickel [#]	-	-	-							<0.7	mg/kg	TM30/PM15
Selenium#	-	-	-							<1	mg/kg	TM30/PM15
Zinc [#]	-	-	-							<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	-	-	-							<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-							<0.03	mg/kg	TM4/PM8
Acenaphthene #	-	-	-							<0.05	mg/kg	TM4/PM8
Fluorene#	-	-	-							<0.04	mg/kg	TM4/PM8
Phenanthrene#	-	-	-							<0.03	mg/kg	TM4/PM8
Anthracene #	-	-	-							<0.04	mg/kg	TM4/PM8
Fluoranthene #	-	-	-							<0.03	mg/kg	TM4/PM8
Pyrene# Benzo(a)anthracene#	-	-	-							<0.03 <0.06	mg/kg	TM4/PM8 TM4/PM8
Chrysene #	-	-	-							<0.00	mg/kg mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	-	-	-							<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	-	-	-							<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	-	-	-							<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	-	-	-							<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	-	-	-							<0.04	mg/kg	TM4/PM8
Coronene	-	-	-							<0.04	mg/kg	TM4/PM8
PAH 6 Total #	-	-	-							<0.22	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	-	-	-							<0.64 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	-	-	-							<0.03	mg/kg	TM4/PM8
Benzo(j)fluoranthene	-	-	-							<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-							<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	-	-							<30	mg/kg	TM5/PM8/PM16
	I	I .	<u>I</u>	<u> </u>	<u> </u>	<u> </u>	I	I				

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT Job No:	23/1129							 	 _		
EMT Sample No.	41	42	43						1		
Sample ID	TP08	TP09	TP11								
Depth	1.00	0.50	0.50							e attached n	
COC No / misc									abbrevia	ations and a	cronyms
Containers	Т	Т	Т						1		
Sample Date	19/01/2023	19/01/2023	19/01/2023								
Sample Type											
	Soil	Soil	Soil								
Batch Number	1	1	1						LOD/LOR	Units	Method No.
Date of Receipt	25/01/2023	25/01/2023	25/01/2023								NO.
TPH CWG											
Aliphatics											
>C5-C6 (HS_1D_AL)#	-	-	-						<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	-	-	-						<0.1	mg/kg	TM36/PM12 TM36/PM12
>C8-C10 (HS_1D_AL)	-	-	-						<0.1 <0.2	mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C12 (EH_CU_1D_AL)#	-	-	-						<0.2	mg/kg mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)* >C16-C21 (EH_CU_1D_AL)*	-	-	-						<7	mg/kg mg/kg	TM5/PM8/PM16
>C21-C35 (EH CU 1D AL)#	-	_	_						<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	-	-	_						<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	-	-	-						<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	-	-	-						<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	-	-	-						<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	-	-	-						<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	-	-	-						<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	-	-	-						<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	-	-	-						<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	-	-	-						<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	-	-	-						<7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR) Total aromatics C5-40 (EH+HS_1D_AR)	-	-	-						<7	mg/kg	TM5/PM8/PM16 TM5/TM38/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	-	-	-						<26 <52	mg/kg mg/kg	TMS/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	_	_	_						<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	-	_	_						<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH 1D AR)	-	-	-						<10	mg/kg	TM5/PM8/PM16
MTBE#	-	-	-						<5	ug/kg	TM36/PM12
Benzene #	-	-	-						<5	ug/kg	TM36/PM12
Toluene #	-	-	-						<5	ug/kg	TM36/PM12
Ethylbenzene #	-	-	-						<5	ug/kg	TM36/PM12
m/p-Xylene #	-	-	-						<5	ug/kg	TM36/PM12
o-Xylene#	-	-	-						<5	ug/kg	TM36/PM12
PCB 28 #	-	-	-						<5 -5	ug/kg	TM17/PM8
PCB 52#	-	-	-						<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-						<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 118# PCB 138#	-	-	-						<5 <5	ug/kg	TM17/PM8
PCB 138" PCB 153#	-	-	-						<5 <5	ug/kg ug/kg	TM17/PM8
PCB 180 #	-	-	-						<5 <5	ug/kg ug/kg	TM17/PM8
Total 7 PCBs#	-	-	-						<35	ug/kg	TM17/PM8
	1	I	I	I.	1	I.	I.	l		59	1

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report : Solid

EMT Job No:	23/1129								_		
EMT Sample No.	41	42	43								
Sample ID	TP08	TP09	TP11								
Depth	1.00	0.50	0.50						Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	Т	Т	Т								
Sample Date	19/01/2023	19/01/2023	19/01/2023								
Sample Type	Soil	Soil	Soil								
Batch Number	1	1	1						LOD/LOR	Units	Method
Date of Receipt	25/01/2023	25/01/2023	25/01/2023								No.
Natural Moisture Content	-	-	-						<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	-	-	-						<0.1	%	PM4/PM0
Hexavalent Chromium#	-	-	-						<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0023	0.0042	0.0046						<0.0015	g/l	TM38/PM20
Chromium III	-	-	-						<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	-	-	-						<0.02	%	TM21/PM24
pH#	7.19	7.29	7.80						<0.01	pH units	TM73/PM11
Mass of raw test portion	-	-	-							kg	NONE/PM17
Mass of dried test portion	-	-	-							kg	NONE/PM17
				<u> </u>	<u> </u>	I	I	 			

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty EMT Job No: 23/1129

Report: CEN 10:1 1 Batch

EMT Job No:	23/1129												
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05			
Depth	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023			No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	0.0028	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.008	0.034	0.006	0.018	0.007	0.003	0.006	0.035	0.004	0.016	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.08	0.34	0.06	0.18	0.07	0.03	0.06	0.35	0.04	0.16	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium [#]	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	0.010	0.010	<0.007	<0.007	<0.007	<0.007	0.009	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	0.10	0.10	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	0.002	<0.002	0.003	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	0.02	<0.02	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	0.004	0.009	0.003	0.005	0.003	<0.003	<0.003	0.097	0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	0.04	0.09	0.03	0.05	0.03	<0.03	<0.03	0.97	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	mg/kg	TM173/PM0
Tuonic					-0			.0	-0	.0		mgmg	TWITT ON TWO
Sulphate as SO4 #	<0.5	2.4	2.8	2.3	<0.5	7.5	<0.5	3.1	<0.5	2.6	<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	<5	24	28	23	<5	75	<5	31	<5	26	<5	mg/kg	TM38/PM0
Chloride #	0.3	0.8	0.4	0.3	<0.3	<0.3	0.3	1.4	<0.3	0.3	<0.3	mg/l	TM38/PM0
Chloride#	<3	8	4	<3	<3	<3	<3	14	<3	3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	2	4	4	<2	<2	<2	2	4	<2	2	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	40	40	<20	<20	<20	<20	40	<20	20	<20	mg/kg	TM60/PM0
pH	6.87	7.38	6.07	6.61	6.73	6.66	6.94	7.10	7.14	7.93	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	<35	7.36	<35	<35	<35	<35	<35	7.10	<35	49	<35	mg/l	TM20/PM0
Total Dissolved Solids #	<350	700	<350	<350	<350	<350	<350	710	<350	490	<350	mg/kg	TM20/PM0
Total Dissolved Sullus	-330	, , , ,	-330	-330	-330	-330	-550	, 10	-330	750	-000	mg/kg	1 IVIZ U/F IVIU

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty
EMT Job No: 23/1129

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No. 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 TP01 TP02 Sample ID TP01 TP02 TP03 TP03 TP04 TP04 TP05 TP05 Depth 0.50 2.00 0.50 1.35 0.50 1.80 0.50 1.30 0.50 2.00 COC No / misc

Please see attached notes for all abbreviations and acronyms

COC No / misc														abbievie		-
Containers	VJT															
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023						
Sample Type	Soil															
Batch Number	1	1	1	1	1	1	1	1	1	1						
Date of Receipt		25/01/2023			25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	25/01/2023	Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis																
Total Organic Carbon #	0.11	0.05	0.85	0.11	0.12	0.09	0.10	0.05	0.11	0.03	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	-		<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-		<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic#	<0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.08	0.34	0.06	0.18	0.07	0.03	0.06	0.35	0.04	0.16	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	0.10	0.10	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	0.02	<0.02	0.03	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	0.04	0.09	0.03	0.05	0.03	<0.03	<0.03	0.97	<0.03	<0.03	4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	<350	700	<350	<350	<350	<350	<350	710	<350	490	4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	40	40	<20	<20	<20	<20	40	<20	20	500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio	82.1	84.7	71.3	85.1	83.9	80.9	83.7	83.9	82.6	85.7	-	-	-	<0.1	%	NONE/PM4
Moisture Content 105C (% Dry Weight)	21.9	18.1	40.2	17.5	19.2	23.6	19.5	19.3	21.0	16.7		_	_	<0.1	%	PM4/PM0
musture content 165C (% biy Weight)	21.9	10.1	40.2	17.5	19.2	23.0	19.5	19.5	21.0	10.7	-	-	-	40.1	70	FIVI-4/FIVIO
pH#	6.94	6.01	6.08	6.93	6.72	6.95	6.93	7.15	6.72	8.05	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	<5	24	28	23	<5	75	<5	31	<5	26	1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	8	4	<3	<3	<3	<3	14	<3	3	800	15000	25000	<3	mg/kg	TM38/PM0

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
23/1129	1	TP01	0.50	1-4	No Interpretation Possible
23/1129	1	TP01	2.00	5-8	No Interpretation Possible
23/1129	1	TP02	0.50	9-12	No Interpretation Possible
23/1129	1	TP02	1.35	13-16	No Interpretation Possible
23/1129	1	TP03	0.50	17-20	No Interpretation Possible
23/1129	1	TP03	1.80	21-24	No Interpretation Possible
23/1129	1	TP04	0.50	25-28	No Interpretation Possible
23/1129	1	TP04	1.30	29-32	No Interpretation Possible
23/1129	1	TP05	0.50	33-36	No Interpretation Possible
23/1129	1	TP05	2.00	37-40	No Interpretation Possible

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/1129	1	TP01	0.50	4	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP01	2.00	8	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP02	0.50	12	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP02	1.35	16	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP03	0.50	20	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP03	1.80	24	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP04	0.50	28	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	1	TP04	1.30	32	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

Contac				illioity				
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/1129	1	TP05	0.50	36	Matthew Turner	06/02/2023	General Description (Bulk Analysis)	Brown soil/Stone
25/1125		11 00	0.50	30				
					Matthew Turner	06/02/2023		NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
23/1129	4	TP05	2.00	40	Matthau Tura	00/00/2022	Consuel Description (Bully Apolysis)	Drawn asil/Otana
23/1129	1	1705	2.00	40	Matthew Turner			Brown soil/Stone
					Matthew Turner	06/02/2023	Asbestos Fibres	NAD
					Matthew Turner	06/02/2023	Asbestos ACM	NAD
					Matthew Turner	06/02/2023	Asbestos Type	NAD
							•	

Client Name: Ground Investigations Ireland

Reference: 12087-07-22

Location: ATU Regional Sports HUB Letterkenny Donegal

Contact: Conor Finnerty

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 23/1129									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/1129

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/1129

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/1129

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

EMT Job No: 23/1129

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
ТМ38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No: 23/1129

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

APPENDIX 4 – HazWasteOnLine TM Report

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

G9746-6HDGV-NE4\

Job name

ATU Regional Sports Hub

Description/Comments

Project Site

12087-07-22 ATU Letterkenny

Classified by

Name: Compan

Barry Sexton Ground Investigations Ireland Ltd
Date: Catherinestown House, Hazelhatch Road,

14 Mar 2023 07:32 GMT Newcastle, Co. Dublin.

Telephone:

353 (01) 601 5175 / 5176

ny: HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification Most recent 3 year Refresher CERTIFIED

Date 10 Apr 2019 19 Apr 2022

Next 3 year Refresher due by Apr 2025

Purpose of classification

7 - Disposal of Waste

Address of the waste

Letterkenny ATU Post Code N/A

Description of industry/producer giving rise to the waste

University Development

Description of the specific process, sub-process and/or activity that created the waste

Construction

Description of the waste

Soil and Stone

HazWasteOnline[™] Report created by Barry Sexton on 14 Mar 2023

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP01-19/01/2023-0.50m		Non Hazardous		3
2	TP01-19/01/2023-2.00m		Non Hazardous		5
3	TP02-19/01/2023-0.50m		Non Hazardous		7
4	TP02-19/01/2023-1.35m		Non Hazardous		9
5	TP03-19/01/2023-0.50m		Non Hazardous		11
6	TP03-19/01/2023-1.80m		Non Hazardous		13
7	TP04-19/01/2023-0.50m		Non Hazardous		15
8	TP04-19/01/2023-1.30m		Non Hazardous		17
9	TP05-19/01/2023-0.50m		Non Hazardous		19
10	TP05-19/01/2023-2.00m		Non Hazardous		21

Related documents

#	Name	Description
1	ATU Regional Sports Hub.HWOL	Element .hwol file used to populate the Job
2	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Barry Sexton

Created date: 14 Mar 2023 07:32 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	23
Appendix B: Rationale for selection of metal species	24
Appendix C: Version	25

Page 2 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline™
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP01-19/01/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP01-19/01/2023-0.50m Chapter:

Moisture content: 17.3%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17.3% Wet Weight Moisture Correction applied (MC)

#			erminand Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	æ	antimony { antimony triox	ide }			0		4 407	4.00		0.000400.0/		
1	~	051-005-00-X 215-1		1309-64-4		2	mg/kg	1.197	1.98	mg/kg	0.000198 %	✓	
2	æ	arsenic { arsenic trioxide	}	1		8.4	mg/kg	1.32	9.172	mg/kg	0.000917 %	,	
_	ľ	033-003-00-0 215-4	81-4	1327-53-3		0.4	mg/kg	1.02	5.172	mg/kg	0.000917 /0	√	
3	æ	cadmium { cadmium oxid	e }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
Ľ		048-002-00-0 215-1	46-2	1306-19-0		10.1		12	40.111	mg/kg			
4	4	chromium in chromium(II chromium(III) oxide (wors	, .	s { •		25.4	mg/kg	1.462	30.701	mg/kg	0.00307 %	✓	
		215-1	60-9	1308-38-9									
5	4	chromium in chromium(V compounds, with the exc of compounds specified e	eption of bar	ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	æ\$	copper { dicopper oxide;	,			26	mg/kg	1.126	24.209	mg/kg	0.00242 %	√	
	-	029-002-00-X 215-2	70-7	1317-39-1	L				,				
7	4	lead { lead chromate } 082-004-00-2 231-8	46.0	7750 07 6	1	17	mg/kg	1.56	21.929	mg/kg	0.00141 %	✓	
_	_	mercury { mercury dichlo		7758-97-6	\vdash								
8	4	080-010-00-X 231-2		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	molybdenum { molybden		1									
9	•	042-001-00-9 215-2	` '	1313-27-5		0.9	mg/kg	1.5	1.117	mg/kg	0.000112 %	√	
40	æ	nickel { nickel chromate }				04.7		0.070	00.700		0.00000.0/	,	
10	_	028-035-00-7 238-7		14721-18-7		24.7	mg/kg	2.976	60.796	mg/kg	0.00608 %	✓	
11	æ	selenium { nickel selenate	e }			1	mg/kg	2.554	2.112	mg/kg	0.000211 %	√	
Ľ	Ĭ	028-031-00-5 239-1	25-2	15060-62-5		'	mg/kg	2.004	2.112	ilig/kg	0.00021176	v	
12	æ\$	zinc { zinc chromate }				79	mg/kg	2.774	181.243	mg/kg	0.0181 %	1	
		024-007-00-3 236-8		13530-65-9								Ľ	
13	0	TPH (C6 to C40) petroleu	<u> </u>			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
				TPH									
14		tert-butyl methyl ether; M 2-methoxy-2-methylpropa	ane	4004.04.4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-6 benzene	53-T	1634-04-4	\vdash								
15		601-020-00-8 200-7	53-7	71-43-2	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene	00 1	1 70-2	H								
16		601-021-00-3 203-6	25-9	108-88-3	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_		•									_	

#		Det	erminand		Note	User entere	ed data	Conv.	Compound	conc	Classification	MC Applied	Conc. Not
"		EU CLP index EC number	Number	CAS Number	CLP Note	Coor omore	u uutu	Factor	Compound	00110.	value	MC A	Used
17	Θ	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-84	49-4	100-41-4	-								
		xylene											
18		203-39 203-57	22-2 [1] 96-5 [2] 76-3 [3] 35-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	pН				6.94	рН		6.94	рН	6.94 pH		
				PH	-								
20		naphthalene				<0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	49-5	91-20-3	-								
21	Θ	acenaphthylene	47.4	boo oo o	4	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		205-9	17-1	208-96-8	-								
22	Θ	acenaphthene	20.0	ho oo o	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		201-46	59-6	83-32-9	+					_			
23	Θ	fluorene 201-69	95-5	86-73-7	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
- '		201-58	81-5	85-01-8		10.00					40.000000 70		1202
25	0	anthracene 204-37	71_1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	fluoranthene	7 1-1	120-12-7	+								
26	Θ	205-9	12-/	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	_	pyrene	12 7	200 44 0									
27	Θ	204-92	27-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene	27 0	123 00 0									
28		601-033-00-9 200-28	80-6	56-55-3	-	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	30 0	00 00 0	+								
29		601-048-00-0 205-92	23-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthene											
30		601-034-00-4 205-9°	11-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthene											
31		601-036-00-5 205-9	16-6	207-08-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene; benzo[de											
32		601-032-00-3 200-02		50-32-8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyrene		,		0.04			0.04		0.000004.0/		1.00
33		205-89	93-2	193-39-5	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		dibenz[a,h]anthracene				-0.04			-0.04		-0.000004.0/		.1.00
34		601-041-00-2 200-18	81-8	53-70-3	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene				-0.04	ma/ka		-0.04	ma/ka	-0.000004.9/		4 OD
აა		205-88	83-8	191-24-2	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36	0	polychlorobiphenyls; PCE	3			<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
50		602-039-00-4 215-64	48-1	1336-36-3		\0.033	mg/kg			mg/kg	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\LUD
37	æ	barium { • barium oxide				90	mg/kg	1.117	83.102	mg/kg	0.00831 %	✓	
		215-12	27-9	1304-28-5									
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
55		205-88	81-7	191-07-1		\$0.04	mg/ng		10.07	g/ng	13.000004 /0		-200
- 1		benzo[j]fluoranthene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
39		601-035-00-X 205-910-3 205-82-3				0 0	l l		3 3				

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™]
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP01-19/01/2023-2.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP01-19/01/2023-2.00m Chapter:

Moisture content: 13.5%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13.5% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			0							2	
1	æ.	antimony { antimony tr				<1	mg/kg	1.197	<1.197	mg/kg	<0.00012 %		<lod< th=""></lod<>
				1309-64-4									
2	æ 🎖	arsenic { arsenic trioxic	•			6.2	mg/kg	1.32	7.081	mg/kg	0.000708 %	✓	
	_			1327-53-3									
3	e Ç	cadmium { cadmium o		1000 10 0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
_		048-002-00-0 215	5-146-2	1306-19-0									
4	æ	chromium in chromium chromium(III) oxide (w	\ / I	S { ⁰		36.4	mg/kg	1.462	46.019	mg/kg	0.0046 %	✓	
		215	5-160-9	1308-38-9									
5	4	chromium in chromium compounds, with the eof compounds specifie	exception of bari	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	æ.	copper { dicopper oxid		•		31	mg/kg	1.126	30.191	mg/kg	0.00302 %	√	
				1317-39-1								ľ	
7	æ	lead { lead chromate }			1	15	mg/kg	1.56	20.239	mg/kg	0.0013 %	1	
	_			7758-97-6	\vdash								
8	ď,	mercury { mercury dick				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	_			7487-94-7	-							-	
9	ď,	molybdenum { molybd	, ,	*		1.2	mg/kg	1.5	1.557	mg/kg	0.000156 %	✓	
				1313-27-5								-	
10	e Ç	nickel { nickel chromat	•	4.4704.40.7	-	26.8	mg/kg	2.976	68.996	mg/kg	0.0069 %	✓	
	_			14721-18-7									
11	4	selenium { nickel seler 028-031-00-5 239	•	15060-62-5	-	<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	_	zinc { zinc chromate }	9-120-2	15060-62-5									
12	€4	,	6-878-9	13530-65-9	-	82	mg/kg	2.774	196.77	mg/kg	0.0197 %	✓	
	_	TPH (C6 to C40) petro		13330-03-9									
13	(1)	11 11 (00 to 040) petro	<u> </u>	TPH		<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; 2-methoxy-2-methylpro	; MTBE;			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216	6-653-1	1634-04-4									
15		benzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-020-00-8 200)-753-7	71-43-2	L	10.000				9,9			
16		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
Ĺ		601-021-00-3 203	3-625-9	108-88-3						3 9			-

		D	Determinand		ote			Conv.			Classification	plied	Conc. Not
#		EU CLP index E	EC Number	CAS Number	CLP Note	User entere	d data	Factor	Compound	conc.	value	MC Applied	Used
17	0	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-	2-849-4	100-41-4		<0.003	ilig/kg		<0.003	mg/kg	<0.0000000 78		\LOD
18		203-		95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			5-535-7 [4]	1330-20-7 [4]									
19	0	pH		PH		6.01	рН		6.01	рН	6.01 pH		
20		naphthalene 601-052-00-2 202-	2-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	acenaphthylene				0.00			0.00		0.000000.0/		1.00
21		205-	i-917-1	208-96-8	1	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22	0	acenaphthene	-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	Θ	fluorene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene	-695-5	86-73-7		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	201- anthracene	-581-5	85-01-8								Н	<lod< td=""></lod<>
25		204-	-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lud< td=""></lud<>
26	0	fluoranthene 205-	j-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27	0	pyrene	-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene	02. 0	.20 00 0									
28		601-033-00-9 200-)-280-6	56-55-3	1	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
29		chrysene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			5-923-4	218-01-9	\vdash							Н	
30		benzo[b]fluoranthene	. 044.0	005.00.0		<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 205- benzo[k]fluoranthene	i-911-9	205-99-2									
31			j-916-6	207-08-9	+	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
32		benzo[a]pyrene; benzo[[def]chrysene	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyrene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
34		dibenz[a,h]anthracene		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		<u> </u>)-181-8	53-70-3			J. J						
35	0	benzo[ghi]perylene 205-	i-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36	0	polychlorobiphenyls; PC				<0.035	ma/ka		-0.02E	malka	<0.0000035 %		<lod< td=""></lod<>
30		602-039-00-4 215-	i-648-1	1336-36-3		<0.030	mg/kg		<0.035	mg/kg	<0.0000033 %		\LUD
37	4	barium { • barium oxid	de } i-127-9	1304-28-5		117	mg/kg	1.117	112.996	mg/kg	0.0113 %	✓	
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranthene	i-881-7	191-07-1		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
Щ		601-035-00-X 205-	5-910-3	205-82-3								Ш	
L							-			Total:	0.0535 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 6 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline™
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP02-19/01/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP02-19/01/2023-0.50m Chapter:

Moisture content: 20.1%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 20.1% Wet Weight Moisture Correction applied (MC)

#			S Number	CLP Note	User entere	d data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
		number		_							_	
1	4	antimony { antimony trioxide } 051-005-00-X	64.4		2	mg/kg	1.197	1.913	mg/kg	0.000191 %	✓	
		arsenic { arsenic trioxide }	-04-4								-	
2	4	033-003-00-0 215-481-4 1327-	-53-3		15.2	mg/kg	1.32	16.035	mg/kg	0.0016 %	✓	
	æ		00 0								Г	
3	_	048-002-00-0 215-146-2 1306-	19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }			131.6	mg/kg	1.462	153.68	mg/kg	0.0154 %	✓	
		215-160-9 1308-	-38-9									
5	4	chromium in chromium(VI) compounds { chromium in chromium(VI) compounds, with the exception of barium chromium	nromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8										
6	æ 🎖				38	mg/kg	1.126	34.184	mg/kg	0.00342 %	✓	
		029-002-00-X 215-270-7 1317-	-39-1								H	
7	æ \$	lead { lead chromate } 082-004-00-2 231-846-0 7758-	07.6	1	21	mg/kg	1.56	26.172	mg/kg	0.00168 %	✓	
	æ		-97-0								H	
8	w.	080-010-00-X 231-299-8 7487-	94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ				4		4.5	4.705		0.000470.0/	٠,	
9	_	042-001-00-9 215-204-7 1313-	-27-5		4	mg/kg	1.5	4.795	mg/kg	0.000479 %	✓	
10	æ.	nickel { nickel chromate }			38	mg/kg	2.976	90.365	mg/kg	0.00904 %	√	
	Ĭ	028-035-00-7 238-766-5 1472	1-18-7		30		2.570		mg/kg	0.00004 70	v	
11	æ 🌡	selenium { nickel selenate }			2	mg/kg	2.554	4.081	mg/kg	0.000408 %	√	
			0-62-5						3 3		ľ	
12	ď,		2.05.0		63	mg/kg	2.774	139.642	mg/kg	0.014 %	✓	
		024-007-00-3 236-878-9 13530 TPH (C6 to C40) petroleum group	0-65-9								H	
13	0	TPH (C6 to C40) petroleum group			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-	-04-4									
15		benzene			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43	3-2			J. J			J. 3			
16		toluene			<0.005	mg/kg		< 0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-8	88-3									

#			Determinand		Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
17		ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
\vdash	+		202-849-4	100-41-4	+							Н	
18			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19 •	, [ЭН		PH		6.08	рН		6.08	рН	6.08 pH		
	┧.	naphthalene		гп								Н	
20		<u> </u>	202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	+	acenaphthylene	202-043-3	31-20-3	+							Н	
21	F	· · ·	205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22 0	1	acenaphthene	200 017 1	200 00 0	+							Н	
22	-	<u> </u>	201-469-6	83-32-9	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	f	luorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	1	ohenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	í	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
00 0	f	luoranthene		1 1 1									
26	+		205-912-4	206-44-0	+	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27	,	oyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
00	ŀ	penzo[a]anthracen	e			0.00			0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000000.00		1.00
28	6	01-033-00-9	200-280-6	56-55-3	1	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
29	1	chrysene		·		<0.02	ma/ka		<0.02	ma/ka	<0.000002 %		<lod< td=""></lod<>
29	6	01-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 /6		\LOD
30	ŀ	penzo[b]fluoranthe	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	6	01-034-00-4	205-911-9	205-99-2		VO.00					40.000000 70		\LOD
31	ŀ	penzo[k]fluoranthe	ne			<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
Ш	6	01-036-00-5	205-916-6	207-08-9	1							Ш	
32		penzo[a]pyrene; be				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash	+		200-028-5	50-32-8	+							Ц	
33	ļ	ndeno[123-cd]pyre		400.00.5	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash	+		205-893-2	193-39-5	+							Н	
34	- 1	dibenz[a,h]anthrac		53-70-3	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash	+	penzo[ghi]perylene	200-181-8	03-70-3	+							Н	
35	۲		205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20 0	١,	oolychlorobiphenyl	J	131-24-2	+							H	
36	Π.		215-648-1	1336-36-3	+	<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	1	oarium {	oxide }			71	mg/kg	1.117	63.338	mg/kg	0.00633 %	√	
\vdash	+		215-127-9	1304-28-5	+							Н	
38	1	coronene	loo= 004 =	1.0.1.0= :	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash	1.		205-881-7	191-07-1								Н	
39		oenzo[j]fluoranther 01-035-00-X	ne 205-910-3	205-82-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		0. 000 00 A		_00 02 0						Total:	0.0579 %	Н	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline™
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP02-19/01/2023-1.35m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP02-19/01/2023-1.35m Chapter:

Moisture content: 12.1%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12.1% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC	terminand C Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
_	æ	number antimony { antimony triox	kide }										
1	•	051-005-00-X 215-1		1309-64-4		1	mg/kg	1.197	1.052	mg/kg	0.000105 %	✓	
2	æ	arsenic { arsenic trioxide	}	1		9.7	mg/kg	1.32	11.257	mg/kg	0.00113 %	,	
-		033-003-00-0 215-4	81-4	1327-53-3	-	9.7	mg/kg	1.32	11.237	mg/kg	0.00113 %	✓	
3	æ	cadmium { cadmium oxid	le }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
Ľ		048-002-00-0 215-1	46-2	1306-19-0		VO.1		1.172	VO.114		<0.0000114 70		
4	4	chromium in chromium(II chromium(III) oxide (wors	, ,	s { •		26.3	mg/kg	1.462	33.788	mg/kg	0.00338 %	✓	
		215-1	60-9	1308-38-9									
5	4	chromium in chromium(V compounds, with the exc of compounds specified of	eption of bar	ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	æ 🎖					46	mg/kg	1.126	45.524	mg/kg	0.00455 %	√	
		029-002-00-X 215-2	70-7	1317-39-1									
7	4		10.0		1	30	mg/kg	1.56	41.132	mg/kg	0.00264 %	✓	
	_	082-004-00-2 231-8		7758-97-6									
8	4	mercury { mercury dichlo 080-010-00-X 231-2	-	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ			1									
9	4	042-001-00-9 215-2	. ,	1313-27-5		0.8	mg/kg	1.5	1.055	mg/kg	0.000105 %	✓	
-	æ			.0.02.0								١.	
10	~	028-035-00-7 238-7		14721-18-7		58.6	mg/kg	2.976	153.306	mg/kg	0.0153 %	✓	
11	æ	selenium { nickel selenat	e }			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
ļ ' '		028-031-00-5 239-1	25-2	15060-62-5		<1	mg/kg	2.554	<2.004	mg/kg	<0.000255 %		<lud< td=""></lud<>
12	æ	zinc { zinc chromate }				86	mg/kg	2.774	209.709	mg/kg	0.021 %	1	
Ľ		024-007-00-3 236-8	78-9	13530-65-9						99		ľ	
13	0	TPH (C6 to C40) petrole	<u> </u>			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
				TPH									
14		tert-butyl methyl ether; M 2-methoxy-2-methylpropa	ane			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-6	53-1	1634-04-4	\vdash								
15		benzene	E2 7	74 42 2	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-7 toluene	DJ-/	71-43-2									
16		601-021-00-3 203-6	25-9	108-88-3	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		001-021-00-3 E03-0	20-3	100-00-3									

		Determinand		ote		Conv.			Classification	plied	Conc. Not
#		EU CLP index	CAS Number	CLP Note	User entered data	Factor). 	value	MC Applied	Used
47	9	ethylbenzene			0.005		0.005	./1	0.0000005.0/		1.00
17		601-023-00-4 202-849-4 10	00-41-4		<0.005 mg/kg		<0.005 mg	/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene									
18		203-396-5 [2] 10 203-576-3 [3] 10	5-47-6 [1] 96-42-3 [2] 98-38-3 [3] 930-20-7 [4]		<0.01 mg/kg		<0.01 mg	ı/kg	<0.000001 %		<lod< td=""></lod<>
19	0	pH	Н		6.93 pH		6.93 pH		6.93 pH		
20		naphthalene			<0.04 mg/kg		<0.04 mg	/lea	<0.000004 %		<lod< td=""></lod<>
20		601-052-00-2 202-049-5 91	-20-3		<0.04 mg/kg		<0.04 mg	/kg	<0.000004 %		<lod< td=""></lod<>
21	0	acenaphthylene			<0.03 mg/kg		<0.03 mg	ı/ka	<0.000003 %		<lod< td=""></lod<>
21		205-917-1 20	8-96-8		<0.00 mg/kg		<0.00 mg	, kg	10.000000 70		,
22	0	acenaphthene			<0.05 mg/kg		<0.05 mg	ı/ka	<0.000005 %		<lod< td=""></lod<>
		201-469-6 83	3-32-9	Ш	111g/Ng		10.00 1119	,9			
23	0	fluorene 201-695-5 86	6-73-7		<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene			<0.03 mg/kg		<0.03 mg	ı/ka	<0.000003 %		<lod< td=""></lod<>
		201-581-5 85	5-01-8		9/119		ing ing	,9			
25	0	anthracene 204-371-1 12	20-12-7		<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
26	0	fluoranthene			<0.03 mg/kg		<0.03 mg	ı/ka	<0.000003 %		<lod< td=""></lod<>
20		205-912-4 20	06-44-0		<0.03 Hig/kg		<0.03 Hig	/ Kg	<0.000003 <i>/</i> ₀		\LOD
27	0	pyrene 204-927-3 12	29-00-0		<0.03 mg/kg		<0.03 mg	ı/kg	<0.000003 %		<lod< td=""></lod<>
28		benzo[a]anthracene			<0.06 mg/kg		<0.06 mg	//ca	<0.000006 %		<lod< td=""></lod<>
20		601-033-00-9 200-280-6 56	6-55-3		<0.06 mg/kg		<0.06 mg	/kg	<0.000000 /0		\LOD
29		chrysene			<0.02 mg/kg		<0.02 mg	ı/ka	<0.000002 %		<lod< td=""></lod<>
23		601-048-00-0 205-923-4 21	8-01-9		<0.02 Hig/kg		<0.02 mg	/kg	<0.000002 /0		\LOD
30		benzo[b]fluoranthene			<0.05 mg/kg		<0.05 mg	ı/ka	<0.000005 %		<lod< td=""></lod<>
50		601-034-00-4 205-911-9 20	5-99-2		<0.00 mg/kg		<0.00 mg	, kg	10.000000 70		,
31		benzo[k]fluoranthene			<0.02 mg/kg		<0.02 mg	ı/ka	<0.000002 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6 20	7-08-9	Ш	9/109		iiig_ iiig	,9			
32		benzo[a]pyrene; benzo[def]chrysene			<0.04 mg/kg		<0.04 mg	ı/ka	<0.000004 %		<lod< td=""></lod<>
		<u> </u>)-32-8		9/1.9						
33	0	indeno[123-cd]pyrene			<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
		i	3-39-5								
34		dibenz[a,h]anthracene			<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
	_		3-70-3	Н							
35	0	benzo[ghi]perylene			<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
)1-24-2	\vdash							
36		polychlorobiphenyls; PCB	200 200 2		<0.035 mg/kg		<0.035 mg	ı/kg	<0.0000035 %		<lod< td=""></lod<>
			336-36-3	\vdash							
37	4	,			52 mg/kg	1.117	51.033 mg	/kg	0.0051 %	✓	
		215-127-9 13	304-28-5								
38	0	coronene 205-881-7 19	91-07-1		<0.04 mg/kg		<0.04 mg	ı/kg	<0.000004 %		<lod< td=""></lod<>
39		benzo[j]fluoranthene			<1 mg/kg		<1 mg	ı/ka	<0.0001 %		<lod< td=""></lod<>
39		601-035-00-X 205-910-3 20)5-82-3		<1 mg/kg		<1 mg	, Ng	CU.UUU1 76		\LUD
							To	otal:	0.059 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™]
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP03-19/01/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP03-19/01/2023-0.50m Chapter:

Moisture content: 15.2%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 15.2% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	L	number			۲							_	
1	4	antimony { antimon 051-005-00-X	215-175-0	1309-64-4		1	mg/kg	1.197	1.015	mg/kg	0.000102 %	✓	
	-	arsenic { arsenic tri		1309-64-4									
2	4		215-481-4	1327-53-3	-	4.9	mg/kg	1.32	5.486	mg/kg	0.000549 %	✓	
	æ	cadmium { cadmiur		1027 00 0									
3	_		215-146-2	1306-19-0	-	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chrom	\ / I	s { [®]		64.5	mg/kg	1.462	79.941	mg/kg	0.00799 %	√	
			215-160-9	1308-38-9									
5	4	chromium in chrom compounds, with the of compounds spec	ne exception of bar	ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	æ 🎉	copper { dicopper o				28	mg/kg	1.126	26.733	mg/kg	0.00267 %	√	
-			215-270-7	1317-39-1									
7	4	lead { lead chroma 082-004-00-2	te } 231-846-0	7758-97-6	1	17	mg/kg	1.56	22.486	mg/kg	0.00144 %	✓	
	æ	mercury { mercury	1	1130-91-0	\vdash								
8	•		231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	molybdenum { moly	1			4.4		4.5	4.704		0.000470.0/		
9	~	, ,	215-204-7	1313-27-5		1.4	mg/kg	1.5	1.781	mg/kg	0.000178 %	✓	
10	æ	nickel { nickel chror	mate }			24.5	mg/kg	2.976	61.835	mg/kg	0.00618 %	√	
	Ĭ	028-035-00-7	238-766-5	14721-18-7		24.5	ilig/kg	2.310	01.000	mg/kg	0.00010 /0	v	
11	æ.	selenium { nickel se	•			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
			239-125-2	15060-62-5									
12	4	zinc { zinc chromat	•			71	mg/kg	2.774	167.026	mg/kg	0.0167 %	√	
			236-878-9	13530-65-9									
13	0	TPH (C6 to C40) p	etroleum group	TPH		<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl etl 2-methoxy-2-methy		IPH		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
15		benzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
Ľ.			200-753-7	71-43-2		.5.550				9			
16		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									

			Determinand		Ф							jed	
#		FILOID in day		CAC November	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	딩							MO	
17		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
\vdash	-	xylene	202-049-4	100-41-4	+							Н	
18		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	рН	F 10 000 1 [1]			6.72	рН		6.72	pН	6.72 pH		
	4			PH									
20		naphthalene	1000 040 5	10.4.00.0	4	<0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	601-052-00-2	202-049-5	91-20-3									
21	0	acenaphthylene	205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22	0	acenaphthene			1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9		\0.03	mg/kg		VO.00		3.000000 /0		\LUD
23	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26	0	fluoranthene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-912-4	206-44-0	-								
27	0	pyrene	204-927-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	-	benzo[a]anthracer		123 00 0									
28		601-033-00-9	200-280-6	56-55-3	\dashv	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
29		chrysene				-0.00			-0.00		-0.000002.0/		<lod< td=""></lod<>
29		601-048-00-0	205-923-4	218-01-9	1	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lud< td=""></lud<>
30		benzo[b]fluoranthe	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
30		601-034-00-4	205-911-9	205-99-2		\(\tau_0.03\)	ilig/kg				<0.000003 78		\LOD
31		benzo[k]fluoranthe				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
\sqcup	-	601-036-00-5	205-916-6	207-08-9	_								
32		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
0.5	-	indeno[123-cd]pyr		00 02 0	+	2 - :	r			r.	0.00000		
33		r al. \(\).	205-893-2	193-39-5	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash	-	601-041-00-2	200-181-8	53-70-3								H	
35	0	benzo[ghi]perylene	e 205-883-8	191-24-2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36		polychlorobipheny	ls; PCB			<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	_	602-039-00-4 barium {	215-648-1 oxide }	1336-36-3	+	71	mg/kg	1.117	67.223	mg/kg	0.00672 %	,	
5,	_		215-127-9	1304-28-5		7 1	mg/kg	1.117	01.223	mg/kg	0.00012 /6	✓	
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
33			205-881-7	191-07-1		\0.04	mg/kg		\0.0 1	g/kg	10.00004 /0		
39		benzo[j]fluoranther	ne 205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
\vdash		007 000 00-X	_00 010-0	_00 02 0						Total:	0.0483 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

₫ <LOD Below limit of detection ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 12 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™] Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP03-19/01/2023-1.80m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample name: LoW Code: TP03-19/01/2023-1.80m Chapter:

Moisture content: 15.1%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 15.1% Wet Weight Moisture Correction applied (MC)

#		EU CLP index EC	erminand Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	æ	number antimony { antimony trioxi	de }										
1	•	051-005-00-X 215-17		1309-64-4	-	1	mg/kg	1.197	1.016	mg/kg	0.000102 %	✓	
2	æ	arsenic { arsenic trioxide }		1.000		6.2	malka	1.32	6.95	ma/ka	0.000695 %	,	
-		033-003-00-0 215-48	31-4	1327-53-3		0.2	mg/kg	1.32	0.95	mg/kg	0.000095 %	✓	
3	æ	cadmium { cadmium oxide) }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
	Ĭ	048-002-00-0 215-14	6-2	1306-19-0		<0.1	ilig/kg	1.142	X0.114	mg/kg	<0.0000114 /0		LOD
4	4	chromium in chromium(III) chromium(III) oxide (worst		s {		56.4	mg/kg	1.462	69.985	mg/kg	0.007 %	√	
		215-16	60-9	1308-38-9									
5	4	chromium in chromium(VI compounds, with the exce of compounds specified e	ption of bar	ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	4	copper { dicopper oxide; c	,			30	mg/kg	1.126	28.676	mg/kg	0.00287 %	√	
	-	029-002-00-X 215-27	′0-7	1317-39-1								-	
7	4	lead { lead chromate }	16.0	7750 07 6	1	14	mg/kg	1.56	18.54	mg/kg	0.00119 %	✓	
		082-004-00-2 231-84 mercury { mercury dichlor		7758-97-6	H								
8	4	080-010-00-X 231-29		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	<u> </u>	molybdenum { molybdenu		1									
9	w	042-001-00-9 215-20	, ,	1313-27-5		1.2	mg/kg	1.5	1.528	mg/kg	0.000153 %	✓	
1.0	æ	nickel { nickel chromate }		1.0.00									
10	~	028-035-00-7 238-76	66-5	14721-18-7		28.8	mg/kg	2.976	72.773	mg/kg	0.00728 %	✓	
11	æ	selenium { nickel selenate	}			1	mg/kg	2.554	2.168	mg/kg	0.000217 %	,	
111	_	028-031-00-5 239-12	25-2	15060-62-5		•	mg/kg	2.554	2.100	mg/kg	0.000217 %	✓	
12	4	zinc { zinc chromate }				84	mg/kg	2.774	197.841	mg/kg	0.0198 %	√	
		024-007-00-3 236-87	' 8-9	13530-65-9								ľ	
13	0	TPH (C6 to C40) petroleu	m group			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
				TPH									
14		tert-butyl methyl ether; M 2-methoxy-2-methylpropa	ne			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-65	53-1	1634-04-4								H	
15		benzene 601-020-00-8 200-75	2 7	71-43-2	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene	13-1	11-43-2									
16		601-021-00-3 203-62	5-9	108-88-3	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_	203-02	.0 0	100 00 0	_								

17 6 118 6 119 19 19 19 19 19 19 19 19 19 19 19 19	ethylbenzene 601-023-00-4 xylene 601-022-00-9 pH naphthalene 601-052-00-2 acenaphthene	EC Number 202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 202-049-5	CAS Number 100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] PH 91-20-3	CLP Note	<0.005 <0.01 6.95	mg/kg mg/kg	Factor	<0.005	mg/kg	value <0.0000005 % <0.000001 %	MC Applied	<lod <lod<="" th=""></lod>
17 6 118 6 119 19 19 19 19 19 19 19 19 19 19 19 19	pH naphthalene 601-052-00-2 acenaphthylene	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 202-049-5	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg						
118 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pH naphthalene 601-052-00-2 acenaphthylene	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 202-049-5	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg				<0.000001 %		<lod< td=""></lod<>
118 6 119 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pH naphthalene 601-052-00-2 acenaphthylene	203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 202-049-5	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]					<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
18	pH naphthalene 601-052-00-2 acenaphthylene	203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 202-049-5	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]					<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 6	naphthalene 601-052-00-2 acenaphthylene				6.95	рН						
20 6 21 22 2 3	601-052-00-2 acenaphthylene			-				6.95	рН	6.95 pH		
20 6 21 22 2 3	601-052-00-2 acenaphthylene		91-20-3	$\frac{1}{2}$								
21 22 2	acenaphthylene		91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
22 • 6		205-917-1		+								
22		205-917-1	000 00 0		<0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22	acenaphthene		208-96-8	+								
, a f					<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
So a 1	•	201-469-6	83-32-9	+							Н	
23	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24 • [phenanthrene	1			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		201-581-5	85-01-8		10.00				9/11.9	10.000000 70		1205
25	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
- 1	fluoranthene	204-371-1	120-12-1	+								
26 [®] 1	iluoraninene	205-912-4	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-	pyrene	203-312-4	200-44-0	+								
27 •	pyrene	204-927-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
+	benzo[a]anthracen		123-00-0	+								
28 I L	601-033-00-9	200-280-6	56-55-3	-	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
	chrysene	200 200 0	50 55 5									
29 I L		205-923-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	benzo[b]fluoranthe		210 01 3	+								
30 I L	601-034-00-4	205-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	benzo[k]fluoranthe		200 00 2	+								
31 _	601-036-00-5	205-916-6	207-08-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	benzo[a]pyrene; be		*	+								
32 I L		200-028-5	50-32-8	\dashv	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
- i	indeno[123-cd]pyre			+	0.04	0		0.04	"	0.00000101		1.00
33		205-893-2	193-39-5	\dashv	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	dibenz[a,h]anthrac				-0.04	ma/lea		-0.04	ma/les	±0.000004.0/		-1.00
34		200-181-8	53-70-3	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
35 a l	benzo[ghi]perylene				.0.04	ma a: //		-0.04	ma ar // - =	-0.000004.0/		.1.00
35		205-883-8	191-24-2	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26 0 1	polychlorobiphenyl	s; PCB			-0.025	ma/ka		-0.035	ma/ka	<0.0000025.0/		-I 0D
36 6	602-039-00-4	215-648-1	1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	barium { [®] <mark>barium</mark>	oxide }			95	mg/kg	1.117	90.052	mg/kg	0.00901 %	✓	
		215-127-9	1304-28-5									
38	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u>~</u>		205-881-7	191-07-1		\0.04	mg/kg		\U.U4	g/kg	3.000004 /0		~
391 1	benzo[j]fluoranther		005.00.0		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
6	601-035-00-X	205-910-3	205-82-3						Total:	0.0538 %	\vdash	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™] Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP04-19/01/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP04-19/01/2023-0.50m Chapter:

Moisture content: 14.9%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14.9% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number		0							2	
1	4		400000		2	mg/kg	1.197	2.037	mg/kg	0.000204 %	✓	
	_	051-005-00-X 215-175-0	1309-64-4									
2	4	arsenic { arsenic trioxide }	4007 50 0		11.9	mg/kg	1.32	13.371	mg/kg	0.00134 %	✓	
	-	033-003-00-0 215-481-4 cadmium { cadmium oxide }	1327-53-3								Н	
3	4	048-002-00-0 215-146-2	1306-19-0	-	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compoun chromium(III) oxide (worst case) }	ds {		43	mg/kg	1.462	53.483	mg/kg	0.00535 %	√	
		215-160-9	1308-38-9									
5	4	chromium in chromium(VI) compoun compounds, with the exception of ba of compounds specified elsewhere in	rium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8										
6	æ 🎉				27	mg/kg	1.126	25.87	mg/kg	0.00259 %	✓	
	-	029-002-00-X 215-270-7	1317-39-1	L							\vdash	
7	4	lead { lead chromate } 082-004-00-2 231-846-0	7750 07 6	1	21	mg/kg	1.56	27.875	mg/kg	0.00179 %	✓	
_	_		7758-97-6	\vdash							\vdash	
8	4	080-010-00-X 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ											
9	•	042-001-00-9 215-204-7	1313-27-5		1.5	mg/kg	1.5	1.915	mg/kg	0.000191 %	✓	
40	æ	nickel { nickel chromate }			00.4		0.070	70.705		0.00707.0/	,	
10	_	028-035-00-7 238-766-5	14721-18-7		29.1	mg/kg	2.976	73.705	mg/kg	0.00737 %	✓	
11	æ	selenium { nickel selenate }			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	Ĭ	028-031-00-5 239-125-2	15060-62-5			ilig/kg	2.554	\2.554	mg/kg	<0.000233 /6		LOD
12	4				86	mg/kg	2.774	203.029	mg/kg	0.0203 %	√	
		024-007-00-3 236-878-9	13530-65-9						5 5		Ľ	
13	0	TPH (C6 to C40) petroleum group			<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
\vdash	-	L	TPH	-								
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1	1634-04-4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		benzene	1034-04-4	\vdash								
15		601-020-00-8 200-753-7	71-43-2	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
<u> </u>		toluene	p 1 70 Z	H								
16		601-021-00-3 203-625-9	108-88-3	1	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		T	1								_	

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Useu
17	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene	202-049-4	100-41-4	+								
18		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	рН	T	PH		6.93	рН		6.93	рН	6.93 pH		
		naphthalene	<u> </u>	FII									
20		601-052-00-2	202 040 5	91-20-3	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			202-049-5	91-20-3	+								
21	0	acenaphthylene	005 047 4	200.00.0	4	<0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8	+								
22	0	acenaphthene	201-469-6	83-32-9	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
23	0	fluorene	201-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	anthracene	,		+	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			204-371-1	120-12-7	+								
26	0	fluoranthene	205-912-4	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracen		120 00 0									
28		601-033-00-9	200-280-6	56-55-3	-	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	200 200 0	00 00 0	+								
29		601-048-00-0	205-923-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthe		210 01 3	+								
30		601-034-00-4	205-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
31		benzo[k]fluoranthe		200 00 2		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9									
32		benzo[a]pyrene; be				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	601-032-00-3	200-028-5	50-32-8	1								
33	0	indeno[123-cd]pyre				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			205-893-2	193-39-5	+								
34		dibenz[a,h]anthrac		F0 70 0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		-	200-181-8	53-70-3	+								
35	0	benzo[ghi]perylene		404.04.0	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		noh sahlar-ti-ti-	205-883-8	191-24-2	+								
36	8	polychlorobipheny 602-039-00-4	215-648-1	1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	ď,	barium { • barium	oxide } 215-127-9	1304-28-5		76	mg/kg	1.117	72.211	mg/kg	0.00722 %	√	
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[j]fluoranther	205-881-7 ne	191-07-1		.4			-,	ma e: //	-0.0004.07		-1.05
39		601-035-00-X	205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0521 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline™
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP04-19/01/2023-1.30m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP04-19/01/2023-1.30m Chapter:

Moisture content: 12.9%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12.9% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			0							2	
1	æ.	antimony { antimony				<1	mg/kg	1.197	<1.197	mg/kg	<0.00012 %		<lod< th=""></lod<>
				1309-64-4	_								
2	æ 🎖	arsenic { arsenic triox	•			10.4	mg/kg	1.32	11.96	mg/kg	0.0012 %	✓	
	_			1327-53-3									
3	æ 🎖	cadmium { cadmium	•	4000 400		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
_		048-002-00-0	15-146-2	1306-19-0									
4	æ	chromium in chromiu chromium(III) oxide (\ / I	s { ⁰		27.5	mg/kg	1.462	35.008	mg/kg	0.0035 %	✓	
		2.	15-160-9	1308-38-9									
5	4	chromium in chromiu compounds, with the of compounds specif	exception of bari	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	æ.	copper { dicopper ox				29	mg/kg	1.126	28.439	mg/kg	0.00284 %	√	
				1317-39-1								ľ	
7	æ 🎉	lead { lead chromate	•		1	17	mg/kg	1.56	23.096	mg/kg	0.00148 %	1	
	_			7758-97-6	\vdash								
8	ď,	mercury { mercury di				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	_			7487-94-7	-							-	
9	ď,	molybdenum { molyb	` ,			0.8	mg/kg	1.5	1.045	mg/kg	0.000105 %	✓	
				1313-27-5								-	
10	e Ç	nickel { nickel chroma	•	44704 40 7	-	25.8	mg/kg	2.976	66.882	mg/kg	0.00669 %	✓	
	_			14721-18-7									
11	«	selenium { nickel sele 028-031-00-5	•	15060-62-5	-	<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	_	zinc { zinc chromate		15060-62-5							<u> </u>		
12	≪4		•	13530-65-9		82	mg/kg	2.774	198.135	mg/kg	0.0198 %	✓	
		TPH (C6 to C40) pet		10000 00 0								H	
13	9	(55 t5 5 15) pot	0 1	TPH		<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl ethe 2-methoxy-2-methylp	er; MTBE;			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 2 ⁻	16-653-1	1634-04-4	L								
15		benzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
Ĺ		601-020-00-8 20	00-753-7	71-43-2			9			9			
16		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
Ĺ		601-021-00-3	03-625-9	108-88-3						3 9			-

,,			Determinand		ote	Unan di	-1 -1-1-	Conv.	0		Classification	pelled	Conc. Not
#		EU CLP index number	EC Number	CAS Number	CLP Note	User entere	d data	Factor	Compound	conc.	value	MC Applied	Used
17	9	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 20)2-849-4	100-41-4		\0.003	ilig/kg		~0.003		<0.0000003 /8		\LOD
18		20	02-422-2 [1] 03-396-5 [2] 03-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	pH	15-535-7 [4]	1330-20-7 [4]		7.15	рН		7.15	pН	7.15 pH		
				PH									
20		naphthalene		lo 4 00 0		< 0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			02-049-5	91-20-3									
21	0	acenaphthylene				< 0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			05-917-1	208-96-8	+					_		Н	
22	0	acenaphthene		I		< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
$\vdash \vdash$		1	01-469-6	83-32-9	+							H	
23	0	fluorene 20	01-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene 20	01-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	anthracene 20	04-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26	0	fluoranthene 20	05-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
27	0	pyrene	04-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene											
28			00-280-6	56-55-3	+	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene											
29		•	05-923-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
00		benzo[b]fluoranthene)	<u>, </u>		0.05			0.05		0.000005.0/		1.00
30			05-911-9	205-99-2	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		benzo[k]fluoranthene				-0.02			-0.02		-0.000003.0/		-1.00
31			05-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
32		benzo[a]pyrene; benz 601-032-00-3	zo[def]chrysene	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyrene		193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
34		dibenz[a,h]anthracen		53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene	05-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\vdash		polychlorobiphenyls;		131-24-2									
36	0		15-648-1	1226 26 2	4	< 0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	ď	barium { • barium ox	xide }	1336-36-3		101	mg/kg	1.117	98.22	mg/kg	0.00982 %	✓	
	0	21 coronene	15-127-9	1304-28-5								Ĥ	41.00
38		benzo[j]fluoranthene)5-881-7	191-07-1		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39			05-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
										Total:	0.0513 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 18 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™] Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP05-19/01/2023-0.50m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP05-19/01/2023-0.50m Chapter:

Moisture content: 17.2%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17.2% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	*	antimony { antimor	•	1		1	mg/kg	1.197	0.991	mg/kg	0.0000991 %	√	
	\vdash	051-005-00-X	215-175-0	1309-64-4	₩							-	
2	4	arsenic { arsenic tr		4007 50 0	_	10.9	mg/kg	1.32	11.916	mg/kg	0.00119 %	✓	
		033-003-00-0 cadmium { cadmiu	215-481-4	1327-53-3									
3	4	048-002-00-0	215-146-2	1306-19-0	-	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
4	4	chromium in chrom	nium(III) compound e (worst case) }	ls {		38.9	mg/kg	1.462	47.076	mg/kg	0.00471 %	√	
			215-160-9	1308-38-9	1								
5	4	chromium in chrom compounds, with the of compounds spe	ne exception of bar	ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
	\vdash	024-017-00-8			₩								
6	4	copper { dicopper of the copper of the coppe	oxide; copper (I) ox 215-270-7	(ide }	_	16	mg/kg	1.126	14.916	mg/kg	0.00149 %	✓	
	æ	lead { lead chroma	1	1317-39-1									
7	•	082-004-00-2	231-846-0	7758-97-6	1	18	mg/kg	1.56	23.247	mg/kg	0.00149 %	√	
8	2	mercury { mercury		1		0.4		4.050	0.405		0.0000405.0/		1.00
8	•	080-010-00-X	231-299-8	7487-94-7	1	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	molybdenum { mol	ybdenum(VI) oxide	}		1.7	mg/kg	1.5	2.112	mg/kg	0.000211 %	√	
		042-001-00-9	215-204-7	1313-27-5		1.7	mg/kg	1.5	2.112	mg/kg	0.000211 /0	~	
10	4	nickel { nickel chro	mate }			23.5	mg/kg	2.976	57.912	mg/kg	0.00579 %	1	
		028-035-00-7	238-766-5	14721-18-7		20.0		2.070	07.012	9/1.9		*	
11	4	selenium {	elenate }			1	mg/kg	2.554	2.115	mg/kg	0.000211 %	1	
		028-031-00-5	239-125-2	15060-62-5	1							ľ	
12	4	zinc { zinc chromat	•	40500 05 0		59	mg/kg	2.774	135.523	mg/kg	0.0136 %	✓	
		024-007-00-3 TPH (C6 to C40) p	236-878-9	13530-65-9								H	
13	0	ΤΡΠ (C6 t0 C40) μ	T T T T T T T T T T T T T T T T T T T	ТРН	-	<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl et 2-methoxy-2-methy	, ,	<u> </u>		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
15		benzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-020-00-8	200-753-7	71-43-2		10.000			10.000	9			
16		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3									

#			Determinand		Note	User entere	ed data	Conv.	Compound	conc	Classification	MC Applied	Conc. Not
"		EU CLP index number	EC Number	CAS Number	CLP Note	Coor omore	u uuu	Factor	Compound	00110.	value	MC A	Used
17	0	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
			02-849-4	100-41-4	4								
		xylene											
18		2	02-422-2 [1] 03-396-5 [2] 03-576-3 [3] 15-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	pH				6.72	рН		6.72	рН	6.72 pH		
				PH									
20		naphthalene		1	4	<0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		<u> </u>	02-049-5	91-20-3	+								
21	0	acenaphthylene	05.047.4	boo oo o		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			05-917-1	208-96-8	+					_		-	
22	0	acenaphthene	04 400 0	ho. oo o	4	<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			01-469-6	83-32-9	+							-	
23	0	fluorene 2	01-695-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		2	01-581-5	85-01-8		10.00					40.000000 70		1202
25	0	anthracene	04-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	fluoranthene	.04-37 1-1	120-12-1	+								
26	0		05-912-4	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	_	pyrene	.00 312 4	200 44 0									
27	0		04-927-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene		123 00 0									
28			00-280-6	56-55-3	+	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	.00 200 0	00 00 0	+								
29			05-923-4	218-01-9	+	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthen			+								
30			05-911-9	205-99-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthen		_00 00 _	+								
31			05-916-6	207-08-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene; ber											
32			00-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
22	8	indeno[123-cd]pyrer	ne	"		0.04			0.04	(1	0.000004.0/		1.00
33		2	05-893-2	193-39-5	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace				<0.04	ma/ka		-0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
34		601-041-00-2 2	00-181-8	53-70-3	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene				-0.04	ma/ka		-0.04	ma/ka	-0.000004.9/		4 OD
55		2	05-883-8	191-24-2	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36	0	polychlorobiphenyls	; PCB			<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
50		602-039-00-4 2	15-648-1	1336-36-3	1	\0.033	mg/kg				\\		\LUD
37	4	barium (^a barium c				72	mg/kg	1.117	66.562	mg/kg	0.00666 %	√	
		2	15-127-9	1304-28-5	1								
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			05-881-7	191-07-1		.0.0 .			.5.0				
39		benzo[j]fluoranthene	05-910-3	205-82-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	1												

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 20 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnline[™]
Report created by Barry Sexton on 14 Mar 2023

Classification of sample: TP05-19/01/2023-2.00m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP05-19/01/2023-2.00m Chapter:

Moisture content: 13.5%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13.5% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number antimony { antimony	v triovide \		\vdash							_	
1	4		215-175-0	1309-64-4		1	mg/kg	1.197	1.035	mg/kg	0.000104 %	✓	
	æ	arsenic { arsenic tric		1000 04 4								\vdash	
2	~	-	•	1327-53-3		13.6	mg/kg	1.32	15.532	mg/kg	0.00155 %	✓	
3	æ	cadmium { cadmium	n oxide }	1		<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< td=""></lod<>
3	Ĭ	048-002-00-0	215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lud< td=""></lud<>
4	4	chromium in chromi chromium(III) oxide	\ / I	s {		44.2	mg/kg	1.462	55.88	mg/kg	0.00559 %	✓	
		2	215-160-9	1308-38-9									
5	4	chromium in chromi compounds, with the of compounds spec	e exception of bari	um chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8											
6	4	copper { dicopper o				25	mg/kg	1.126	24.347	mg/kg	0.00243 %	✓	
	_			1317-39-1								\vdash	
7	4	lead { lead chromate 082-004-00-2	•	7758-97-6	1	15	mg/kg	1.56	20.239	mg/kg	0.0013 %	✓	
	æ	mercury { mercury o		1130-91-0					,			H	
8	44	, ,	•	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	molybdenum { moly				4.4		4.5	4 407		0.000440.00	١.	
9	~	, ,	, ,	1313-27-5		1.1	mg/kg	1.5	1.427	mg/kg	0.000143 %	✓	
10	æ	nickel { nickel chron	nate }			24.6	mg/kg	2.976	63.332	mg/kg	0.00633 %	1	
10	Ĭ	028-035-00-7	238-766-5	14721-18-7		24.0		2.310	00.002	mg/kg	0.00033 //	'	
11	æ.	selenium { nickel se	•			<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
				15060-62-5									
12	4	zinc { zinc chromate	•			80	mg/kg	2.774	191.971	mg/kg	0.0192 %	√	
				13530-65-9								Н	
13	0	TPH (C6 to C40) pe	<u> </u>	TPH		<52	mg/kg		<52	mg/kg	<0.0052 %		<lod< td=""></lod<>
14		tert-butyl methyl eth 2-methoxy-2-methyl	ner; MTBE;	IIPH		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
15		benzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
			200-753-7	71-43-2			J. J						
16		toluene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3									

#		Deter	rminand		Note	User entere	ed data	Conv.	Compound	conc	Classification	MC Applied	Conc. Not
#		EU CLP index EC I	Number	CAS Number	CLP Note	OSEI EIILEIE	u uata	Factor	Compound	conc.	value	MC A	Used
17	0	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-849	9-4	100-41-4	-								
		xylene											
18		601-022-00-9 202-422 203-396 203-576 215-538	6-5 [2] 6-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
19	0	pH				8.05	рН		8.05	рН	8.05 pH		
				PH									
20		naphthalene	2.5	04.00.0	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2 202-049	9-5	91-20-3									
21	Θ	acenaphthylene	7.4	000 00 0	4	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		205-917	/-1	208-96-8	-								
22	Θ	acenaphthene	2.0	00.00.0	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	201-469	9-6	83-32-9								-	
23	0	fluorene 201-695	5-5	86-73-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		201-581	1-5	85-01-8	_								
25	Θ	anthracene 204-371	1-1	120-12-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	0	fluoranthene											
26		205-912	2-4	206-44-0	+	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	0	pyrene											
27		204-927	7-3	129-00-0	+	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene		.20 00 0									
28		601-033-00-9 200-280)-6	56-55-3	\dashv	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	3 0	00 00 0	+-								
29		601-048-00-0 205-923	3-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[b]fluoranthene											
30		601-034-00-4 205-911	1-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthene	1 0	200 00 2	+								
31		601-036-00-5 205-916	3-6	207-08-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
-	\neg	benzo[a]pyrene; benzo[def				_							
32		601-032-00-3 200-028		50-32-8	+	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20	_	indeno[123-cd]pyrene				0.04			6.04	0	0.0000010/		1.00
33		205-893	3-2	193-39-5	+	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		dibenz[a,h]anthracene				-0.04	ma/les		-0.04	ma/lea	-0.000004.0/		-1 OD
34		601-041-00-2 200-181	1-8	53-70-3	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	0	benzo[ghi]perylene				-0.04	ma e: /1		-0.04	m. a. //	-0.000004.0/		.1.00
35		205-883	3-8	191-24-2	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26	0	polychlorobiphenyls; PCB				40 00E	ma/les		-0.025	ma/lea	*0 000000E 0/		4L OD
36		602-039-00-4 215-648	3-1	1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>
37	æ	barium { • barium oxide }				91	mg/kg	1.117	87.886	mg/kg	0.00879 %	✓	
		215-127	7-9	1304-28-5									
38	0	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
55		205-881	1-7	191-07-1		10.04	mg/ng		10.04	g/ng	13.000004 /0		-200
		benzo[j]fluoranthene				<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
39	- 1	601-035-00-X 205-910	1.2	205-82-3	- 1								

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 22 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H332\ ,\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H315\ ,\ Resp.\ 1;\ H315\ ,\ H31$

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Carc.\ 2;\ H351\ ,\ Skin\ Sens.\ 1;\ H317\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Acute\ 1$

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

HazWasteOnlineTM
Report created by Barry Sexton on 14 Mar 2023

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

barium oxide (EC Number: 215-127-9, CAS Number: 1304-28-5)

Description/Comments: Data from ECHA's C&L Inventory Database, Sigma Aldrich SDS dated 6/2/20 Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/88825

Data source date: 02 Apr 2020

Hazard Statements: Acute Tox. 3; H301, Skin Corr. 1B; H314, Eye Dam. 1; H318, Acute Tox. 1; H332

^o coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings (edit as required)

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

Page 24 of 25 G9746-6HDGV-NE4VP www.hazwasteonline.com

HazWasteOnlineTM
Report created by Barry Sexton on 14 Mar 2023

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum (molybdenum(VI) oxide)

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

barium {barium oxide}

Cr VI not detected

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW

HazWasteOnline Classification Engine Version: 2023.72.5542.10253 (13 Mar 2023)

HazWasteOnline Database: 2023.72.5542.10253 (13 Mar 2023)

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

APPENDIX 5 – WAC Summary Data

Waste Categorisation Summary Table ATU Letterkenny

ATU Letterkenny Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05	TP05	7				
Sample ID Sample Depth (m)	0.50	2.00	0.50	1.35	0.50	1.80	0.50	1.30	0.50	2.00		WAR			
Material Description	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay		BROWN INVI	STIGATIONS INSLAND	ē.	
Sample Date	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023	19/01/2023		lasetech	var 6 (incomments)		
LoW Code	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	17 05 04	Inert Criteria	Walshestown / IMS* Criteria	Hazardous	LOD LOR	Units
Waste Category Metals	Category A	Category A	Category A	Category A	Category A	Category A	Category A	Category A	Category A	Category A		IMS* Criteria	Criteria	4	
Antimony	2	<1	2	1	1	1	2	<1	1	1	-	-	HazWaste	<1	mg/kg
Arsenic	8.4	6.2	15.2	9.7	4.9	6.2	11.9	10.4	10.9	13.6	-	-	HazWaste	<0.5	mg/kg
Barium	90	117	71	52	71	95	76	101	72	91	-	-	HazWaste	<1	mg/kg
Cadmium	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	HazWaste	<0.1	mg/kg
Chromium	25.4	36.4	131.6	26.3	64.5	56.4	43	27.5	38.9	44.2	-	-	HazWaste	<0.5	mg/kg
Copper	26	31	38	46	28	30 14	27	29	16	25	-	-	HazWaste	<1	mg/kg
Lead Mercury	17 <0.1	15 <0.1	21 <0.1	30 <0.1	17 <0.1	<0.1	21 <0.1	17 <0.1	18 <0.1	15 <0.1	-	-	HazWaste HazWaste	<5 <0.1	mg/kg
Molybdenum	0.9	1.2	4	0.8	1.4	1.2	1.5	0.8	1.7	1.1			HazWaste	<0.1	mg/kg mg/kg
Nickel	24.7	26.8	38	58.6	24.5	28.8	29.1	25.8	23.5	24.6		-	HazWaste	<0.7	mg/kg
Selenium	1	<1	2	<1	<1	1	<1	<1	1	<1	-	-	HazWaste	<1	mg/kg
Zinc	79	82	63	86	71	84	86	82	59	80	-	-	HazWaste	<5	mg/kg
Hexavalent Chromium	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	-	-	HazWaste	< 0.3	mg/kg
116-5113	0.04	0.04	0.00	0.00	0.70	0.05	0.00	7.45	0.70	0.05				-0.04	-117-
pH (solid sample) alkali reserve	6.94	6.01	6.08	6.93	6.72	6.95	6.93	7.15	6.72	8.05	-	-	HazWaste -	<0.001	pH units gNaOH/100g
dikdii 1636176								_			-		-	~0.000	givaciii ioog
Asbestos															
Asbestos (Dry Weight)	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	-	-	•		%
Asbestos (Moisture Corrected Weight)	-	-	-	-	-	-	-	-	-	-	-	-	0.1	<0.001	%
ACM Detected	-	-	-	-	-	-	-	-	-	-	-	-	-	Presence	Presence
DAU-														↓	
PAHs Naphthalene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		1	HazWaste	<0.04	malka
Acenaphthylene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	-	Hazvvaste HazWaste	<0.04	mg/kg mg/kg
Acenaphthene	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	HazWaste	<0.05	mg/kg
Fluorene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	-	HazWaste	<0.04	mg/kg
Phenanthrene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	-	-	HazWaste	<0.03	mg/kg
Anthracene	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.04	< 0.04	< 0.04	-	-	HazWaste	<0.04	mg/kg
Fluoranthene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	-	-	HazWaste	<0.03	mg/kg
Pyrene	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	-	-	HazWaste	<0.03	mg/kg
Benzo(a)anthracene	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	-	-	HazWaste	<0.06	mg/kg
Chrysene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	HazWaste	<0.02	mg/kg
Benzo(bk)fluoranthene	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	-	-	HazWaste	<0.07	mg/kg
Benzo(a)pyrene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	-	HazWaste	<0.04	mg/kg
Indeno(123cd)pyrene Dibenzo(ah)anthracene	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	-	-	HazWaste HazWaste	<0.04	mg/kg
Benzo(ghi)perylene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	-	HazWaste	<0.04	mg/kg mg/kg
Coronene	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	-	HazWaste	<0.04	mg/kg
PAH 6 Total	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	-	_	-	<0.22	mg/kg
PAH 17 Total	<0.64	< 0.64	<0.64	<0.64	< 0.64	<0.64	<0.64	<0.64	<0.64	<0.64	100	100	-	<0.64	mg/kg
Benzo(b)fluoranthene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	-	-	HazWaste	<0.05	mg/kg
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	HazWaste	<0.02	mg/kg
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		-	HazWaste	<1	mg/kg
Hydrocarbons															
TPH (C5-40)	<52	<52	<52	<52	<52	<52	<52	<52	<52	<52	-	-	HazWaste	<52	mg/kg
MTBE	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	HazWaste	<5	ug/kg
Benzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	HazWaste	<5	ug/kg
Toluene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	HazWaste	<5	ug/kg
Ethylbenzene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	HazWaste	<5	ug/kg
m/p-Xylene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	HazWaste	<5	ug/kg
o-Xylene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	4 000	4.000	HazWaste	<5	ug/kg
Total 7 PCBs	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	1,000	1,000	HazWaste	<35	ug/kg
WAC** Solid Sample Summary															
Total Organic Carbon *	0.11	0.05	0.85	0.11	0.12	0.09	0.10	0.05	0.11	0.03	3	6	-	<0.02	%
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	6	6	-	<0.025	mg/kg
Sum of 7 PCBs	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	1	-	<0.035	mg/kg
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	500	500	-	<30	mg/kg
PAH Sum of 6 PAH Sum of 17	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	<0.22	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	<0.22 <0.64	100	100	-	<0.22	mg/kg
FAIT SUIT OF 17	~0.04	~0.04	~0.04	~0.04	~U.04	~0.04	NO.04	~u.04	~0.04	~0.04	100	100	•	~0.04	mg/kg
WAC** Leachate Data															
Arsenic	< 0.025	<0.025	0.028	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.5	1.5	-	<0.025	mg/kg
Barium	0.08	0.34	0.06	0.18	0.07	0.03	0.06	0.35	0.04	0.16	20	20	-	<0.03	mg/kg
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	0.04	-	<0.005	mg/kg
Chromium	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	0.5	-	<0.015	mg/kg
Copper	<0.07	0.10	0.10	<0.07	<0.07	<0.07	<0.07	0.09	<0.07	<0.07	2	2	-	< 0.07	mg/kg
Mercury Molybdenum	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	<0.0001 <0.02	0.01	0.01 1.5	-	<0.0001	mg/kg
Nickel	<0.02	0.02	<0.02	0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	0.5	0.4		<0.02	mg/kg mg/kg
Lead	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	0.5	0.5	-	<0.05	mg/kg
Antimony	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	0.18	-	<0.02	mg/kg
Selenium	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.3	-	<0.03	mg/kg
Zinc	0.04	0.09	0.03	0.05	0.03	<0.03	<0.03	0.97	<0.03	<0.03	4	4	-	<0.03	mg/kg
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		700	<350	<350	<350	<350	<350	710	<350	490	4000	12,000	-	<350	mg/kg
Total Dissolved Solids	<350														
Dissolved Organic Carbon	<20	40	40	<20	<20	<20	<20	40	<20	20	500	500	-	<20	mg/kg
Dissolved Organic Carbon Phenol	<20 <0.1	40 <0.1	40 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	1		<0.1	mg/kg
Dissolved Organic Carbon Phenol Fluoride	<20 <0.1 <3	40 <0.1 <3	40 <0.1 <3	<0.1 <3	1 10	1 10		<0.1 <3	mg/kg mg/kg						
Dissolved Organic Carbon Phenol	<20 <0.1	40 <0.1	40 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	1		<0.1	mg/kg

NAD- no asbestos detected
* - Integrated Materials Solutions Landfill, Hollywood Great, Nag's Head, The Naul, Co. Dublin
** - Ilimits as specified in Council Decision 2003/33/EC

APPENDIX 18.A Photographic Survey

Photographic Survey 31st March 2023

Appendix 18.A Photographic Survey details the results of the photographic survey and the existing artificial lighting sources close to the proposed development site. Figure 18.A.1 below illustrates the photographic lighting survey locations as detailed in Chapter 18 Artificial Lighting Figure 18.3: Photographic Lighting Survey Locations and Chapter 18 Artificial Lighting Table 18.4: Plate numbers and description of photographic locations.

Figure 18.A.1: Photographic Lighting Survey Locations

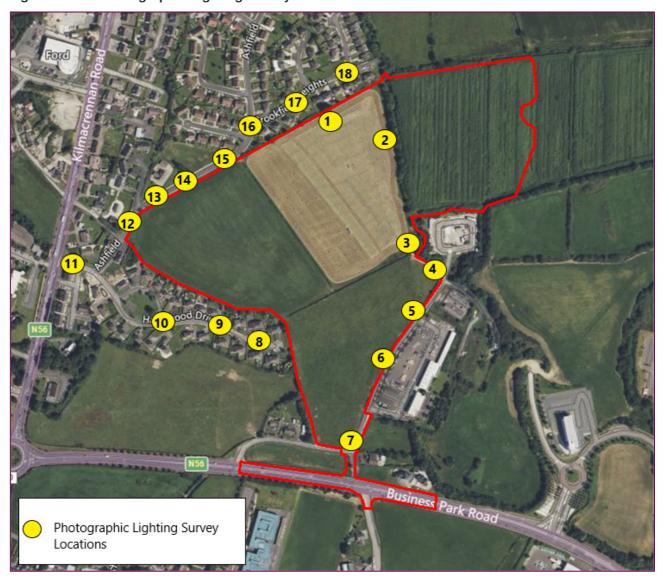


Table 18.A.1: Photographs of Existing Artificial Lighting in Local Area

Table 18.A.2: Photographs of Existing Artificial Lighting in Local Area

Plate 5 Plate 6

Plate 7 Plate 8

Table 18.A.3: Photographs of Existing Artificial Lighting in Local Area

Plate 12

Table 18.A.4: Photographs of Existing Artificial Lighting in Local Area

Plate 13 Plate 14

Plate 15 Plate 16

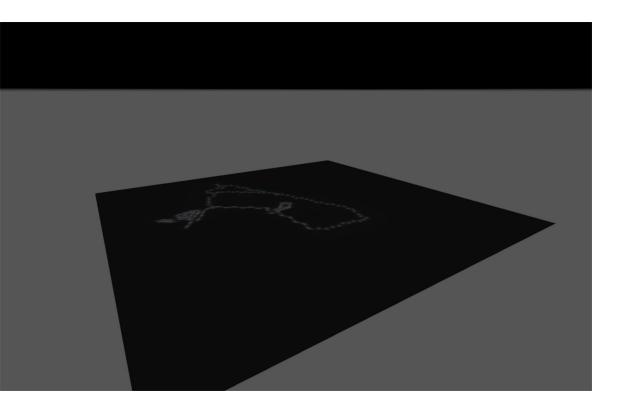
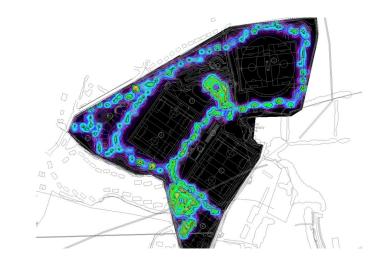
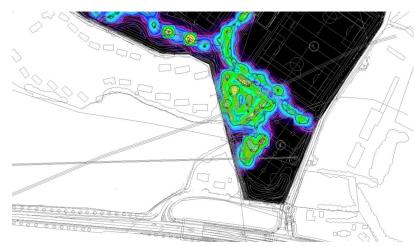


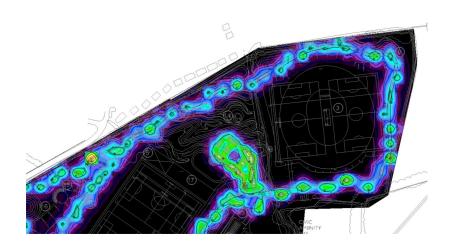
Table 18.A.5: Photographs of Existing Artificial Lighting in Local Area


2955 - Letterkenny Sports Hub

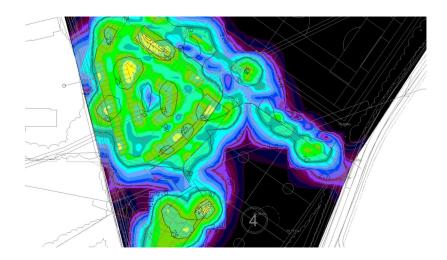
Obtrusive Lighting Report

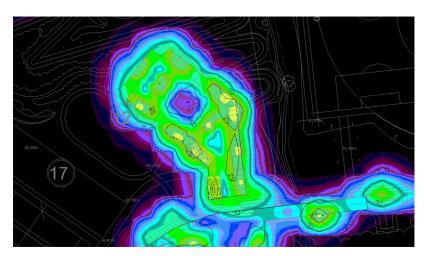


Images


Overall Site Plan Lux Plot

Southern Site Lux Plot

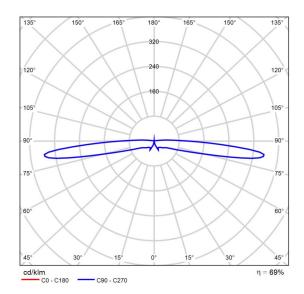

Northern Site Lux Plot



Images

Southern Carpark Lux Plot

Northern Carpark Lux Plot



Product data sheet

Philips - BCP500 T25 S LED56/740 NO

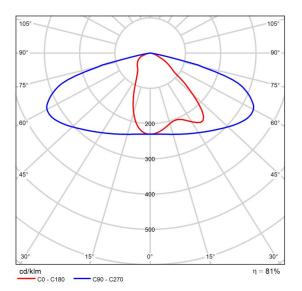
Р	37.5 W
Φ_{Lamp}	5600 lm
Φ _{Luminaire}	3842 lm
η	68.62 %
Luminous efficacy	102.5 lm/W
ССТ	3000 K
CRI	100

Polar LDC

Ceiling		70	70	50	50	30	70	70	50	50	30
Walls		50	30	50	30	30	50	30	50	30	30
Floor		20	20	20	20	20	20	20	20	20	20
Room :	size Y	Viewing direction at right angles to lamp axis				Viewing direction parallel to lamp axis					
2H	2H	17.9	19.8	18.3	20.2	20.7	17.9	19.8	18.3	20.2	20.
	3H	23.6	25.4	24.1	25.9	26.4	23.6	25.4	24.1	25.9	26.
	4H	28.0	29.7	28.5	30.2	30.8	28.0	29.7	28.5	30.2	30.
	6H	33.5	35.2	34.0	35.7	36.3	33.5	35.2	34.0	35.7	36.
	8H	35.7	37.4	36.2	37.9	38.5	35.7	37.4	36.2	37.9	38.
	12H	37.2	38.8	37.7	39.3	39.9	37.2	38.8	37.7	39.3	39
4H	2H	19.4	21.2	19.9	21.7	22.2	19.4	21.2	19.9	21.7	22
	3H	25.3	26.9	25.8	27.4	28.0	25.3	26.9	25.8	27.4	28
	4H	29.7	31.2	30.2	31.8	32.4	29.7	31.2	30.2	31.8	32
	6H	35.2	36.6	35.7	37.2	37.9	35.2	36.6	35.7	37.2	37.
	8H	37.4	38.8	38.0	39.4	40.1	37.4	38.8	38.0	39.4	40.
	12H	38.9	40.2	39.5	40.8	41.5	38.9	40.2	39.5	40.8	41.
8H	4H	31.3	32.7	31.9	33.3	34.0	31.3	32.7	31.9	33.3	34.
	6H	36.6	37.9	37.2	38.5	39.2	36.6	37.9	37.2	38.5	39
	8H	38.8	40.0	39.4	40.6	41.4	38.8	40.0	39.4	40.6	41.
	12H	40.4	41.5	41.0	42.1	42.8	40.4	41.5	41.0	42.1	42.
12H	4H	32.1	33.5	32.7	34.1	34.8	32.1	33.5	32.7	34.1	34.
	6H	37.1	38.3	37.8	39.0	39.7	37.1	38.3	37.8	39.0	39
	8H	39.3	40.5	40.0	41.1	41.8	39.3	40.5	40.0	41.1	41.
/ariation of t	he observe	r position	for the lun	ninaire dist	ances S						
S = 1.				0.1 / -0					0.1 / -0		
S = 1.5H		+0.2 / -0.3				+0.2 / -0.3					
S = 2.0H		+0.4 / -0.5				+0.4 / -0.5					
Standard	ard table										
Correction summand											

UGR diagram (SHR: 0.25)

4



Product data sheet

Philips - BRP102 T25 DM /740

P	56.0 W
Φ_{Lamp}	7600 lm
Φ _{Luminaire}	6175 lm
η	81.26 %
Luminous efficacy	110.3 lm/W
ССТ	3000 K
CRI	100

Polar LDC

Site 1

Luminaire list

Φ_{total}	P_{total}	Luminous efficacy
626266 lm	5873.5 W	106.6 lm/W

pcs.	Manufacturer	Article No.	Article name	Р	Ф	Luminous efficacy
73	Philips		BCP500 T25 S LED56/740 NO	37.5 W	3842 lm	102.5 lm/W
56	Philips		BRP102 T25 DM /740	56.0 W	6175 lm	110.3 lm/W

Site 1 (Light scene 1)

Calculation objects

Site 1 (Light scene 1)

Calculation objects

Calculation surfaces

Properties	Ē	E _{min}	E _{max}	g 1	g ₂	Index
Road Way - Medium Slow Moving Traffic (10lx) Perpendicular illuminance Height: 0.000 m	14.6 lx	0.95 lx	56.5 lx	0.065	0.017	CG1
Carpark (20lx - Major Sports Complex) Perpendicular illuminance Height: 0.000 m	23.4 lx	5.93 lx	44.9 lx	0.25	0.13	CG2
Carpark (20lx - Major Sports Complex) Perpendicular illuminance Height: 0.000 m	19.6 lx	1.29 lx	43.3 lx	0.066	0.030	CG3
DAC (20lx - Part M) Perpendicular illuminance Height: 0.000 m	28.8 lx	20.1 lx	41.5 lx	0.70	0.48	CG4
Walkway (7.5lx - P3/S3 Classification) Perpendicular illuminance Height: 0.000 m	11.2 lx	1.32 lx	107 lx	0.12	0.012	CG5
Obtrusive Light E3 (10lx/2lx) Perpendicular illuminance Height: 10.000 m	0.49 lx	0.062 lx	1.84 lx	0.13	0.034	CG6
Obtrusive Light E3 (10lx/2lx) Perpendicular illuminance Height: 10.000 m	0.72 lx	0.30 lx	1.56 lx	0.42	0.19	CG7
Obtrusive Light E3 (10lx/2lx) Perpendicular illuminance Height: 10.000 m	0.43 lx	0.006 lx	1.13 lx	0.014	0.005	CG8
Obtrusive Light E3 (10lx/2lx) Perpendicular illuminance Height: 10.000 m	0.55 lx	0.19 lx	1.67 lx	0.35	0.11	CG9
Site Plan Perpendicular illuminance Height: 0.000 m	2.78 lx	0.001 lx	108 lx	0.000	0.000	CG10
DAC (20lx - Part M) Perpendicular illuminance Height: 0.000 m	23.5 lx	12.6 lx	39.7 lx	0.54	0.32	CG11

Site 1 (Light scene 1)

Calculation objects

DAC (20lx - Part M) Perpendicular illuminance Height: 0.000 m	33.9 lx	17.2 lx	47.2 lx	0.51	0.36	CG12
DAC (20lx - Part M) Perpendicular illuminance Height: 0.000 m	28.8 lx	17.5 lx	42.0 lx	0.61	0.42	CG13
Obtrusive Light E3 (10lx/2lx) Perpendicular illuminance Height: 10.000 m	0.64 lx	0.26 lx	1.56 lx	0.41	0.17	CG14

Utilisation profile: DIALux presetting (5.1.4 Standard (outdoor transportation area))